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Abstract We study the problem of designing group-strategyproof cost-sharing
mechanisms. The players report their bids for getting serviced and the mech-
anism decides a set of players that are going to be serviced and how much
each one of them is going to pay. We determine three conditions: Fence Mono-
tonicity, Stability of the allocation and Validity of the tie-breaking rule that
are necessary and sufficient for group-strategyproofness, regardless of the cost
function. Consequently, Fence Monotonicity characterizes group-strategyproof
cost-sharing schemes closing an important open problem. Finally, we use our
results to prove that there exist families of cost functions, where any group-
strategyproof mechanism has arbitrarily poor budget balance.

1 Introduction

Algorithmic Mechanism Design [1] is a field of Game Theory, that tries to con-
struct algorithms for allocating resources that give to the players incentives to
report their true interest in receiving a good, a service, or in participating in a
given collective activity. The pivotal constraint when designing a mechanism
for any problem is that it is truthful. Truthfulness also known as strategyproof-
ness requires that no player can strictly improve her utility by lying. In many
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settings this single requirement for an algorithm to be truthful restricts the
repertoire of possible algorithms dramatically [2–5].

In settings, where truthfulness does not impose such severe limitations, like
for example in cost-sharing problems, it is desirable to construct mechanisms
that are also resistant to manipulation by groups of players. A group of players
forms a successful coalition when the utility of each player in the group does
not decrease and the utility of at least one player strictly increases if some
of them announce values other than their true value. Group-strategyproofness
naturally generalizes truthfulness by requiring that no group of players can
form a successful coalition by lying, when the values of the other players are
fixed.

In this paper we study the following problem: A set of n customers/players
are interested in receiving a service. Players report their valuation of the service
and the mechanism decides the players that are going to receive the service
and the price that each one of them will pay. We want to characterize all
possible mechanisms that satisfy group-strategyproofness via identifying nec-
essary and sufficient conditions for the payment functions that give rise to
these mechanisms.

We provide a complete characterization of group-strategyproof mechanisms
closing an important open question posed in [6], [7, Chapter 15]. Immorlica,
Mahdian and Mirrokni [6] identified the property of semi-cross-monotonicity,
a local property that should be satisfied by the payment part (cost-sharing
scheme) of every group-strategyproof mechanism. We introduce a generaliza-
tion of semi-cross-monotonicity, Fence Monotonicity, which still refers only
to the payment part of the mechanism, and is not only necessary but also
sufficient for group-strategyproofness. Given any payment rule that satisfies
Fence Monotonicity, we show that every allocation that satisfies Stability and
Validity of the tie-breaking rule, yields a group-strategyproof mechanism. Our
characterization of group-strategyproofness works for any cost function as we
do not make any assumption about budget balance. Also, there are no addi-
tional constraints like fixed tie-breaking rules [6,8].

Our results provide a new general framework for designing group-strategy-
proof mechanisms. Thus, it opens new perspectives to the study of the very im-
portant problem of cost-sharing, the study of which was initiated by Moulin [9],
where we additionally have a cost function C such that for each subset of play-
ers S the cost for providing service to all the players in S is C(S). However, the
strength of our results is that they apply to any cost function, since throughout
our proof we do not make any assumptions at all about this cost function. We
believe that our work can be the starting point for constructing new interesting
classes of mechanisms for specific cost-sharing problems.

As our characterization is the first characterization of group-strategyproof-
ness, it is interesting to draw a parallel between our result and the many known
characterizations of strategyproofness [10,11,2–5] and our characterization of
group-strategyproofness. Fence Monotonicity is a condition rather similar to
Cycle Monotonicity [10], in the sense that both are conditions that should be
satisfied by all possible restrictions of the output space of the mechanism. A
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great virtue for a characterization of a mechanism that uses money is to be
able to separate the payment from the allocation part. Cycle Monotonicity is
a necessary property for the allocation. If it is satisfied, we know a way to
define truthful payments [10]. Fence Monotonicity refers only to the payments
of a mechanism and if it is satisfied, Stability and Validity of the tie-breaking
rule can be used to determine a group-strategyproof allocation.

We believe that Fence Monotonicity can also be a starting point in the
quest for alternative characterizations, as Cycle monotonicity has done so far
[11,2–5]. Unfortunately, even though Fence Monotonicity is succinct in its
description, it is much more complicated than Cycle Monotonicity. Nonethe-
less, group-strategyproofness is a notion much more complicated than strat-
egyproofness and we believe that Fence Monotonicity is not only important
and unavoidable but also useful. We demonstrate the latter by proving the
first, even though simple, lower bound on the budget balance of any group-
strategyproof mechanism.

1.1 Our results and related work.

The design of group-strategyproof mechanisms for cost-sharing was first dis-
cussed by Moulin and Shenker [9,12]. Moulin [9] defined a condition on the
payments called cross-monotonicity, which states that the payment of a ser-
viced player should not increase as the set of serviced players grows. Any
mechanism with payments satisfying cross-monotonicity can be easily turned
to a simple mechanism named after Moulin. A Moulin mechanism first checks
if it can provide service to all players, so that each one has non-negative util-
ity and if not, it gradually diminishes the set of players that are candidates
to be serviced, by throwing away at each step a player that cannot pay to
get serviced (and who because of cross-monotonicity still cannot pay if the set
of candidates becomes smaller). In fact, if the cost function is sub-modular,
then the only possible 1-budget balanced group-strategyproof mechanisms are
Moulin mechanisms [12]. The great majority of cost-sharing mechanisms pro-
posed are Moulin mechanisms.

Nevertheless, recent results showed that for several important cost-sharing
games Moulin mechanisms can only achieve a very bad budget balance fac-
tor [6,13,14]. Some alternative, very interesting, and much more complicated
in their description mechanisms that are group-strategyproof but not Moulin
have been proposed [6,15], however, these do not exhaust the class of group-
strategyproof mechanisms. In this work we introduce Fencing Mechanisms, a
new general framework for designing group-strategyproof mechanisms, that
generalizes Moulin mechanisms [9].

Recently, Mehta et. al. [16] proposed the notion of weak group-strategypro-
ofness, that relaxes group-strategyproofness. It regards a formation of a coali-
tion, as successful, when each player who participates in the coalition strictly
increases her personal utility. They also introduce acyclic mechanisms, a gen-
eral framework for designing weakly group-strategyproof mechanisms, how-
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ever, the question of determining all possible weakly group-strategyproof mech-
anisms is an important question that remains open. Another alternative notion
of group-strategyproofness was proposed by Bleischwitz et. al. in [17].

The problem we solve here was a major open problem posed in [6],[7, Chap-
ter 15]. The attempt to find such a characterization has lead to several inter-
esting results [15,8]. In contrast to previous characterization attempts that
characterized mechanisms satisfying some additional boundary constraints [6,
8], our characterization is complete and succinct. The only previously known
complete characterization was for the case of two players [15,8]. The great
challenge now is how our characterization can be applied for constructing new
efficient mechanisms for specific cost-sharing problems. We believe that it can
significantly enrich the repertoire of mechanisms with good budget balance
guarantees for specific problems.

In the notion of group-strategyproofness it is important to understand
that ties play a very important role. This is in contrast to strategyproofness,
where ties can be in most cases broken arbitrarily (see for example [18]). An
intuitive way to understand this is that a mechanism designer of a group-
strategyproof mechanism expects a player to tell a lie in order to help the
other players increase their utility, even when she would not gain any profit
for herself. This player is at a tie but decides strategically if she should lie
or not. Consequently, a characterization that assumes a priori a tie-breaking
rule, and hence, greatly restricts the repertoire of possible mechanisms [6,19]
might be useful for specific problems and easier in its statement, but can never
capture group-strategyproofness in its full generality.

Our proofs are involved and make a repeated use of induction. The main
difficulty and value of our work though, was to identify necessary and sufficient
conditions for group-strategyproof payments, that are also succinct to describe
and add to our understanding of the notion of group-strategyproofness. In
proving the necessity of Fence Monotonicity we first have to prove lemmas
that also reveal interesting properties of the allocation part of the mechanism.
A novel tool that we introduce is the harm relation that refines the notion of
negative elements defined in [6]. Proving that Fencing Mechanisms, i.e., mech-
anisms with payments satisfying Fence Monotonicity and allocation satisfying
Stability and Validity of the tie-breaking rule, are group-strategyproof turns
out to be rather complicated.

2 Defining the model

The Mechanism

Suppose that A = {1, 2, . . . , n} is a set of players interested in receiving a
service. Each of the players has a private type vi, which is her valuation for
receiving the service.

A cost sharing mechanism (O, p) consists of a pair of functions, O : Rn →
2A that associates with each bid vector b the set of serviced players and p :
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Rn → Rn that associates with each bid vector b a vector p(b) = (p1(b), . . . , pn(b)),
where the i-th coordinate is the payment of player i. Assuming quasi-linear
utilities, each player wants to maximize the quantity viai− pi(b) where ai = 1
if i ∈ O(b) and ai = 0 if i /∈ O(b).

As it is common in the literature, we concentrate on mechanisms that
satisfy the following very simple conditions [9,12,6]:

– Voluntary Participation (VP): A player that is not serviced is not charged
(i /∈ O(b) ⇒ pi(b) = 0) and a serviced player is never charged more than
her bid (i ∈ O(b)⇒ pi(b) ≤ bi).

– No Positive Transfer (NPT): The payment of each player i is non-negative
(pi(b) ≥ 0 for all i).

– Consumer Sovereignty (CS): For each player i there exists a value b∗i ∈ R
such that if she bids b∗i , then it is guaranteed that player i will receive the
service no matter what the other players bid.1

In accordance with [9,6] we will concentrate on mechanisms, where the players
are additionally able to deny receiving service, no matter what the other play-
ers bid. To ensure this we just assume that players can report negative bids.
Then VP and NPT imply that if a player announces a negative amount, she
will not receive the service. Even though negative bids may not seem realistic,
they can model the denial of revealing any information to the mechanism. To
put things simply, if a player i bids −1, then she does not receive service and
if she bids b∗i , then she receives service, no matter what the other players bid.

We are interested in mechanisms that are group-strategyproof (GSP). A
mechanism is GSP if for every two valuation vectors v, v′ and every coalition
of players S ⊆ A, satisfying vi = v′i for all i /∈ S, one of the following is true:
(a) There is some i ∈ S, such that via

′
i − pi(v′) < viai − pi(v) or (b) for all

i ∈ S, it holds that via
′
i − pi(v′) = viai − pi(v).

A cost-sharing scheme is a function ξ : A × 2A → R+ ∪ {0} such that
for every S ⊂ A and every i /∈ S, we have ξ(i, S) = 0. Theorem 4.1 (c) in
Immorlica et. al. [6] states that for any GSP mechanism (O, p) of our setting
there is an underlying cost-sharing scheme ξ such that for every bid vector
b and player i it holds, that pi(b) = ξ(i, O(b)). In other words the payment
of an agent depends only on the outcome and may not be different at two
bid vectors that are mapped by the allocation of the mechanism to the same
subset.

The cost function and budget balance.

The cost of providing service is given by a cost function C : 2A → R+ ∪ {0},
where C(S) specifies the cost of providing service to all players in S.

A desirable property of cost-sharing schemes with respect to some cost
function is budget balance. We say that a cost-sharing scheme ξ is α-budget

1 From VP it holds that b∗i ≥ maxb∈Rn pi(b). It is easy to verify that strategyproofness
implies that any value greater than b∗i satisfies CS for player i. Thus, when we refer to this
crucial value, we will without loss of generality assume that this inequality is strict.
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balanced, where 0 ≤ α ≤ 1, if for every S ⊆ A it holds that α · C(S) ≤∑
i∈S ξ(i, S) ≤ C(S). Correspondingly, we say that a mechanism is α-budget

balanced if its cost sharing scheme is α-budget balanced. We chose to define
the cost function last in order to stress that our results are completely indepen-
dent of any budget-balance assumption, thus, they apply to any cost-sharing
problem.

An important and well-studied property of cost-sharing schemes is cross-
monotonicity, which is sufficient for group-strategyproofness [9]. A cost-sharing
scheme is cross-monotonic if ξ(i, S) ≥ ξ(i, T ) for every S ⊂ T ⊆ A and every
player i ∈ S. This means that the payment of a player cannot increase as the
number of players that receive service increases.

In the attempt to provide a characterization of GSP mechanisms Immor-
lica et. al. [6] provided a partial characterization and identified semi-cross-
monotonicity, an important condition that should be satisfied by the cost-
sharing scheme of any GSP mechanism. A cost sharing scheme ξ is semi-
cross-monotonic if for every S ⊆ A, and every player i ∈ S, either for all
j ∈ S \ {i}, ξ(j, S \ {i}) ≤ ξ(j, S) or for all j ∈ S \ {i}, ξ(j, S \ {i}) ≥ ξ(j, S).

As we later show in Proposition 1 (i), semi-cross-monotonicity can be al-
most directly derived from Fence Monotonicity, the property we introduce in
this work.

3 Our Characterization

3.1 Fence Monotonicity

Fence Monotonicity considers each time a restriction of the mechanism that
can only output as the serviced set, subsets of U that contain all players in L.
To be more formal, consider all possible pairs of subsets of the players L,U
such that L ⊆ U ⊆ A. Given a pair L ⊆ U , Fence Monotonicity considers only
sets of players S with L ⊆ S ⊆ U . Each Fence Monotonicity condition should
be satisfied for any possible such restriction of the players that are candidates
for receiving service. We call the condition Fence Monotonicity because we
“fence” the possible allocations of the mechanism by the sets L and U .

We denote by ξ∗(i, L, U) the minimum payment of player i for getting
serviced when the output of the mechanism is restricted by L and U , i.e.,
ξ∗(i, L, U) := min{L⊆S⊆U,i∈S} ξ(i, S).

Definition 1 (Fence Monotonicity) We will say that a cost-sharing scheme
satisfies Fence Monotonicity, if for every L ⊆ U ⊆ A, it satisfies the following
three conditions:

(a) There exists one set S with L ⊆ S ⊆ U , such that for all i ∈ S, we have
ξ(i, S) = ξ∗(i, L, U).

(b) For each player i ∈ U\L there exists one set Si with i ∈ Si and L ⊆ Si ⊆ U ,
such that for all j ∈ Si \ L, we have ξ(j, Si) = ξ∗(j, L, U).
(Since i ∈ Si \ L, it holds that ξ(i, Si) = ξ∗(i, L, U).)
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(c) If for some C ⊂ U there is a player j ∈ C with ξ(j, C) < ξ∗(j, L, U)
(obviously L * C), then there exists one set T 6= ∅ with T ⊆ L \ C, such
that for all i ∈ T , ξ(i, C ∪ T ) = ξ∗(i, L, U).

An alternative way of expressing conditions (a) and (b) of Fence Mono-
tonicity at some L,U is the following: We say that a set S is optimal for a
player i ∈ S if she is serviced with her minimum possible payment in this
restriction, i.e., ξ∗(i, L, U) = ξ(i, S). Condition (a) requires the existence of
a set that is optimal for all players in it. Condition (b) says that each agent
i ∈ U \L belongs to some set Si that is optimal for the players in Si \L. Notice
that for two different players i, j the sets Si, Sj might be different.

Condition (c) is the most important and involved condition. It compares
the minimum possible payment of a player in this restriction of the mechanism
with her payment when the outcome can be any subset of U , i.e., it should
not necessarily contain the players in L. Assume that player j is better off
when the outcome is some set C, where L 6⊆ C, i.e., loosely speaking some of
the players in L \ C “harm” player j by their presence in the outcome. Then
condition (c) requires the existence of some non-empty set T with T ⊆ L \C,
such that each player in T is indifferent between her payment in C ∪ T and
her minimum payment in the original restriction.

Observe that if ξ is cross-monotonic, then the set U is optimal for every
player. Hence, conditions (a) and (b) are always satisfied. Moreover, condition
(c) is trivially satisfied, as for every C ⊂ U , it holds that for all i ∈ C,
ξ(i, C) ≥ ξ(i, U) = ξ∗(i, L, U). As a result, cross-monotonicity implies Fence
Monotonicity.

As we prove in Section 6 semi-cross-monotonicity imposes a restriction
equivalent to a special case of property (b) of Fence monotonicity. Therefore,
every cost sharing scheme that satisfies Fence Monotonicity also satisfies semi-
cross-monotonicity. The following theorem is the main contribution of this
paper. The only if and if parts of the theorem are proven in Sections 4 and 5
respectively.

Theorem 1 A cost sharing scheme gives rise to a GSP mechanism if and
only if it satisfies Fence Monotonicity.

3.2 Fencing Mechanisms

If one is given a cost sharing scheme that satisfies Fence Monotonicity, it is
not straightforward constructing a GSP mechanism. Fence Monotonicity can
yield a GSP mechanism if and only if it is coupled with an allocation rule that
satisfies two properties, which we refer to as Stability and Validity of the tie-
breaking rule respectively. We call the mechanisms underlying this framework
Fencing mechanisms.

The mechanisms we design can be put in the following general framework:
Given a bid vector as input, we search for a pair of sets L,U , where L ⊆
U ⊆ A, that meets the criteria of Stability we define below and then we
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choose one of the allocations in this restriction according to a valid tie-breaking
rule. In Section 5 we show that if the underlying cost-sharing scheme is Fence
Monotone, then there exists a unique stable pair at every bid vector.

If the search for the stable pair is exhaustive, then the resulting algorithm
runs in exponential time. Given an arbitrary cost sharing scheme that satisfies
Fence Monotonicity we do not know of any polynomial time algorithm for com-
puting the stable pair at every input. However, if we restrict our attention to
payments that satisfy stronger conditions like, for example, cross-monotonicity
we can come up with a polynomial-time algorithm for finding a stable pair.

Definition 2 (Stability) A pair L,U is stable at b w.r.t. a cost-sharing
scheme ξ if the following conditions are true:

1. For all i ∈ L, bi > ξ∗(i, L, U),
2. for all i ∈ U \ L, bi = ξ∗(i, L, U), and
3. for all R ⊆ A \ U , there is some i ∈ R, such that bi < ξ∗(i, L, U ∪R).

The first Stability condition ensures that each player in L can be serviced
with strictly positive utility. The second Stability condition implies that every
player in U \ L can be serviced in at least one outcome but with zero utility.
The last property requires that if we try to enlarge U , then at least one of the
newly added players cannot pay in any possible outcome.

After identifying a stable pair these mechanisms output a set S, where
L ⊆ S ⊆ U given by a tie-breaking function.

Definition 3 (Validity) The mapping σ : 2A × 2A × Rn → 2A is a valid
tie-breaking rule w.r.t. a cost-sharing scheme ξ, if for all L ⊆ U ⊆ A, the set
S = σ(L,U, b) satisfies L ⊆ S ⊆ U and for all i ∈ S, ξ(i, S) = ξ∗(i, L, U).

The dependence on the bid vector allows the mechanism of our framework
to change its tie-breaking rule between two bid vectors that share a common
stable pair. Obviously, condition (a) of Fence Monotonicity guarantees that a
valid tie-breaking rule always exists.

Definition 4 We will say that a mechanism (O, p) is a Fencing Mechanism
if and only if

1. there is a cost-sharing scheme ξ that satisfies Fence Monotonicity such that
for all i, pi(b) = ξ(i, O(b))) and

2. for any bid vector b, O(b) = σ(L,U, b), where L,U is a stable pair at b and
σ is a valid tie-breaking rule w.r.t. ξ.

It is easy to verify that every Fencing Mechanism satisfies VP from Stability
and valid tie-breaking. Moreover, it satisfies CS, because if a player bids higher
than any of her payments, then again by Stability she belongs to the set L
and gets serviced.

Remark 1 Assume that ξ is cross-monotonic and let S be the output of the
Moulin mechanism for some bid vector b. Then, the pair L,U , where L = {i ∈
S | bi > ξ(i, S)} and U = S, is the unique stable pair at b. Moreover, the tie
breaking rule σ(L,U, b) = U is always valid. Therefore, Moulin mechanisms
can be viewed as a special case of Fencing mechanisms.
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The next theorem completes our characterization by showing that given a
cost-sharing scheme that satisfies Fence monotonicity, then Stability and Valid-
ity are sufficient and necessary conditions for the design of groupstrategyproof
mechanisms. The proof of this theorem is given in Section 5.

Theorem 2 A mechanism is GSP if and only if it is a Fencing Mechanism.

4 Every GSP Mechanism is a Fencing Mechanism

4.1 Necessity of Fence Monotonicity

Here, we prove that the cost-sharing scheme of any GSP mechanism satisfies
Fence Monotonicity. Let (O, p) be an arbitrary GSP mechanism, let ξ be the
corresponding cost-sharing scheme and consider some U ⊆ A. We show that
for every L ⊆ U , ξ satisfies each one of the Fence Monotonicity conditions
using induction on |U \ L|.

Induction Base: There is only one set L = U under this restriction
which implies that ξ∗(i, L, U) = ξ(i, U) for all i ∈ U , hence the set U satisfies
properties (a) and (b). For property (c) consider some C and j ∈ C such
that ξ(j, C) < ξ∗(i, L, U). Then, we can set T = U \ C since for all i ∈ T ,
ξ(i, C ∪ T ) = ξ(i, U) = ξ∗(i, L, U).

Induction Step: First, we define the notion of a harm relation and we
prove that it is a strict partial order.

Lemma 1 Consider two pairs L ⊆ U and L′ ⊆ U ′. If U ′ ⊆ U and L ⊆ L′,
then for all i ∈ U , ξ∗(i, L′, U ′) ≥ ξ∗(i, L, U).

Proof It is obvious that the minimum payment of player i can only decrease as
the set of outcomes, over which the minimum in the definition of ξ∗ is taken,
becomes larger. ut

Definition 5 (Harm relation) Fix two sets L ⊆ U and suppose that i, j ∈
U . We say that i harms j, if ξ∗(j, L, U) < ξ∗(j, L ∪ {i}, U). If i does not
harm j, then ξ∗(j, L, U) = ξ∗(j, L ∪ {i}, U) (we get this equality by applying
Lemma 1).

Notice that if i ∈ L it cannot harm any other element by definition.

Lemma 2 If i harms j at L,U then for all Sj such that L ⊆ Sj ⊆ U and
ξ(j, Sj) = ξ∗(j, L, U) it holds that ξ(i, Sj ∪ {i}) = ξ∗(i, L, U).

Proof Assume that i harms j, that is ξ∗(j, L, U) < ξ∗(j, L ∪ {i}, U). Notice
that that i /∈ Sj , since ξ∗(j, L ∪ {i}, U) > ξ(j, Sj). It follows that Sj ⊂ U .
By induction hypothesis we can apply condition (c) of Fence Monotonicity at
L ∪ {i}, U . Since the only non-empty subset of (L ∪ {i}) \ Sj is {i} we can
only set T = {i}. Therefore, we get that ξ(i, Sj ∪ {i}) = ξ∗(i, L ∪ {i}, U) or
equivalently ξ(i, Sj ∪ {i}) = ξ∗(i, L, U)
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Lemma 3 (i) The harm relation satisfies anti-symmetry and transitivity and
consequently it is a strict partial order and the induced sub-graph G[U \ L] is
a directed acyclic graph.

(ii) For every i ∈ L, one of the following holds: either every j ∈ U \ L
harms i or there exists some sink k of the subgraph G[U \ L] that does not
harm i.

(iii) For every i ∈ U \ L, one of the following holds: either i is a sink of
the sub-graph G[U \ L] or there exists some sink k of the sub-graph G[U \ L]
that is harmed by i.

Proof (i) We show this using the induction hypothesis at every L ∪ {i}, U for
every i ∈ U \ L and more specifically condition (c) of Fence Monotonicity.

If i and j belong to L neither can harm the other as we argued before.
Also in the case where some i ∈ U \ L harms some j ∈ L, anti-symmetry
follows right away since j does not harm i. Last, consider two distinct elements
i, j ∈ U \ L such that i harms j. From the definition of ξ∗ there is a set Sj ,
where j ∈ Sj , L ⊆ Sj ⊆ U and ξ(j, Sj) = ξ∗(j, L, U). Using Lemma 2 we get
that ξ(i, Sj ∪ {i}) = ξ∗(i, L, U). Since L∪ {j} ⊆ Sj ∪ {i} ⊆ U we also get that
ξ∗(i, L ∪ {j}, U) ≤ ξ(i, Sj ∪ {i}). Putting the last two relations together and
applying Lemma 1 we get ξ∗(i, L ∪ {j}, U) = ξ∗(i, L, U), which means that j
does not harm i.

We show transitivity of the harm relation in a similar manner. Consider
three distinct players i, j and k, where i, j ∈ U \L and k ∈ U (k may belong to
L) such that i harms j and j harms k. Assume towards a contradiction that
i does not harm k. Since ξ∗(k, L, U) = ξ∗(k, L ∪ {i}, U), there is some set Sk,
where k ∈ Sk, L∪{i} ⊆ Sk ⊆ U such that ξ(k, Sk) = ξ∗(k, L, U). By applying
Lemma 2 we get that ξ(j, Sk ∪ {j}) = ξ∗(j, L, U). As L ∪ {i} ⊆ Sk ∪ {j} ⊆ U
we reach a contradiction our assumption that ξ∗(j, L, U) < ξ∗(j, L ∪ {i}, U).

(ii) Suppose that there is some j ∈ U \ L that does not harm i. If j is a
sink of G[U \ L], setting k = j completes our proof. Otherwise, there must
be a path that goes through j but does not stop there. Let k be the sink of
this path (dag). Notice that transitivity implies that j harms k. Thus, it is
impossible that k harms i, since using transitivity again we would deduce that
j harms i contradicting our assumption.

(iii) If i is not a sink of G[U \ L], there must be an path starting from i,
which ends at a sink k of this graph. Transitivity implies that i harms k. ut

Lemma 3 allows the effective use of the induction hypothesis in order to identify
a successful coalition if some part is violated. We continue by revealing several
very interesting and important allocation properties that are satisfied by any
groupstrategyproof mechanism, which we will use to prove the induction step
for each property of Fence Monotonicity.
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Condition (a) of Fence Monotonicity

For the proof of condition (a) we consider bid vectors where all the players in
L have bid b∗i , all players in A\U have bid −1, and the players in U \L have
bid exactly ξ∗(i, L, U).

We first prove a weaker version of condition (a) of Fence Monotonicity.
(Notice that here not all players in Sj but just one player j ∈ L and the
players in Sj \ L are guaranteed to pay their minimum payment).

Lemma 4 For every j ∈ L, there is some set Sj, where L ⊆ Sj ⊆ U such
that for all i ∈ Sj \ L, ξ(i, Sj) = ξ∗(i, L, U) and ξ(j, Sj) = ξ∗(j, L, U).

Proof Consider some j ∈ L. We take two cases as Lemma 3(ii) indicates:
Case 1: Suppose that every i ∈ U\L harms j. This implies that ξ∗(j, L, U) =

ξ(j, L) and hence we can set Sj = L, and Lemma 4 is trivially satisfied, since
Sj \ L = ∅.

Case 2: Consider some sink k that does not harm j. Applying the induction
hypothesis, part (a) of Fence Monotonicity is satisfied at L∪{k}, U , and there
is a set S, where L ∪ {k} ⊆ S ⊆ U such that for all i ∈ S, ξ(i, S) = ξ∗(i, L ∪
{k}, U). Using the fact that k is a sink and also does not harm j we get that for
all i ∈ S \L, ξ∗(i, L∪{k}, U) = ξ∗(i, L, U) and ξ∗(j, L∪{k}, U) = ξ∗(j, L, U).
As a result, we can set Sj = S. ut

Using this we can prove Lemma 5, which implies that the cost-sharing
scheme satisfies condition (a) of Fence Monotonicity.

Lemma 5 At the bid vector b, where for all i ∈ L, bi = b∗i , for all i ∈ U \ L,
bi = ξ∗(i, L, U), and for all i /∈ U , bi = −1, it holds that L ⊆ O(b) ⊆ U and
for all i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U).

Proof By CS and VP the output of the mechanism satisfies L ⊆ O(b) ⊆ U .
First note that a player i ∈ U \ L has utility zero: she is either not serviced,
or by VP, if she is serviced her payment cannot exceed her bid and cannot be
less than her minimum payment ξ∗(i, L, U) so ξ(i, O(b)) = bi = ξ∗(i, L, U). It
remains to show that every j ∈ L also pays ξ∗(j, L, U).

Suppose towards a contradiction that for some player j ∈ L, ξ(j,O(b)) >
ξ∗(j, L, U) (If the set U \L is empty U = L it is impossible that some j ∈ L is
charged more than ξ∗(j, L, U) = ξ(j, L)). Let Sj be the set that is guaranteed
to exist by Lemma 4. Then players in (U \ L) ∪ {j} could form a coalition
in the following way: the players in Sj \ L would bid b∗i and the players in
U \ Sj bid −1. By CS and VP the outcome of the mechanism is Sj . Since
for every i ∈ Sj \ L, ξ(i, Sj) = ξ∗(i, L, U) their utilities remain zero after
this manipulation, while the utility of player j strictly increases, and thus the
coalition is successful.

Consequently for all j ∈ L, j ∈ O(b) and ξ(j,O(b)) = ξ∗(j, L, U) and the
players in O(b) \ L are charged their minimum payment as well. ut

As a result, S = O(b) meets the requirements of condition (a) of Fence
Monotonicity.



12 Emmanouil Pountourakis, Angelina Vidali

Corollary 1 Condition (a) of Fence Monotonicity is satisfied at L,U .

Condition (b) of Fence Monotonicity

Using Lemma 3(iii), we can split the proof in two cases: First we consider the
sinks, as the fulfillment of the second condition of Fence Monotonicity for a
sink is an immediate consequence of the induction hypothesis.

Lemma 6 For every sink i of G[U \ L] condition (b) of Fence Monotonicity
is satisfied at L,U .

Proof Using the induction hypothesis at L ∪ {i}, U we get from part (a) of
Fence Monotonicity that there is a set S, where L ∪ {i} ⊆ S ⊆ U , such
that for all j ∈ S, ξ(i, S) = ξ∗(j, L ∪ {i}, U). Since i is a sink, she does
not harm any other player from U \ L. So, we have that for all j ∈ S \ L,
ξ∗(j, L, U) = ξ∗(j, L ∪ {i}, U). Thus, setting Si = S condition (b) of Fence
Monotonicity is satisfied for i at L,U . ut

We already know that condition (b) of Fence Monotonicity is satisfied for
sinks at L,U and the induction hypothesis also guarantees that it is satisfied
for every player at L ∪ {i}, U , i.e., if we add to L some player i /∈ L. To use
this fact in order to prove Fence Monotonicity for all other cases as well, we
prove that if property (b) of Fence Monotonicity is satisfied just for one player
i at some L′, U ′, then if the input is b (as defined in the next lemma), this
player receives service and is charged ξ∗(i, L′, U ′). (We use L′, U ′ to stress out
that these are arbitrary sets not necessarily connected to the sets L,U of the
induction step; specifically we are going to apply this lemma for the pairs L,U
and L ∪ {j}, U where j is a sink of the induced graph G[U \ L].)

Lemma 7 Consider some L′ ⊆ U ′ ⊆ A. Suppose that the set Si as in condi-
tion (b) of Fence Monotonicity exists for some player i ∈ U ′ \L′. Then at any
bid vector b with bj = b∗j for j ∈ L′, bi > ξ∗(i, L′, U ′), bj = ξ∗(j, L′, U ′) for
all j ∈ U ′ \ (L′ ∪ {i}), and bj = −1 for all j /∈ U , it holds that i ∈ O(b) and
ξ(i, O(b)) = ξ∗(i, L′, U ′).

Proof Like in the proof of Lemma 5 we can show that By CS and VP the
output of the mechanism satisfies L′ ⊆ O(b) ⊆ U ′. Moreover, all players in
U ′ \(L′∪{i}) have utility zero. We need to show that i is serviced and charged
ξ∗(i, L, U).

Suppose towards a contradiction that player i, is either not serviced or
is charged ξ(i, O(b)) > ξ∗(i, L, U). Obviously if she is serviced at a higher
payment then she prefers the set Si to the current outcome. If she is not
serviced she again prefers Si, as we assumed that bi > ξ∗(i, L, U) = ξ(i, Si)
and thus her utility would become positive if the outcome was Si. In a similar
manner like in the proof of Lemma 5 she could form a coalition, with the
players in U ′ \ L′, enforcing the output Si. Again our assumption about the
payments of the rest of the agents in Si \ L′ implies that their utility remains
unchanged thus this coalition is successful. ut
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Now consider a player i in U \ L, that is not a sink of G[U \ L] and let j
be one of its sinks such that i harms j (i.e. i 6= j, k). In order to prove that
property (b) of Fence Monotonicity is satisfied for i, we will invoke group-
strategyproofness at certain bid vectors (trying to generalize Example 2 in the
Appendix where i takes the role of player 3 and j the role of player 4).

Let ε > 0 be an arbitrarily small quantity. Specifically let

ε < min
{i,S,S′:ξ(i,S)6=ξ(i,S′)}

|ξ(i, S)− ξ(i, S′)|,

i.e., a strictly positive quantity that is strictly less than any strictly positive
difference between the payments that one player may be charged. Notice that
in the case where every player is charged the same amount in every outcome
then there is no restriction for ε. However, this is not true in the case that we
study since i harms j.

We gradually reason about the allocation of the bid vectors bj , bi,j and
finally bi, which are defined in the following table.

bids k ∈ L i sink j k ∈ U \ (L ∪ {i, j}) k ∈ A \ U
bj b∗k ξ∗(i, L, U) ξ∗(j, L, U) + ε ξ∗(k, L, U) −1
bi,j b∗k ξ∗(i, L, U) + ε b∗j ξ∗(k, L, U) −1

bi b∗k ξ∗(i, L, U) + ε ξ∗(j, L, U) + ε ξ∗(k, L, U) −1

The allocation properties that we show for the bid vectors we just defined
are summarized in the following Table.

bid payment of j payment of the sink k

Claim 1 bj j /∈ O(bj) ξ(j,O(bj)) = ξ∗(j, L, U)
Claim 2 bi,j ξ(i, O(bi,j)) = ξ∗(i, L, U) ξ(j,O(bi,j)) > ξ∗(j, L, U)
Claim 3 bi ξ(i, O(bi)) = ξ∗(j, L, U) j /∈ O(bi)

Claim 1 At the bid vector bj the following hold:

(a) player j is serviced and charged ξ∗(j, L, U),

(b) player i is not serviced.

Proof We get that player j is serviced and charged ξ∗(j, L, U) by applying
Lemmas 6 and 7 for j with L′ = L and U ′ = U .

(b) Suppose towards a contradiction that i ∈ O(bj). The payment of player
j would be lower bounded by ξ∗(j,  L ∪ {i}, U), since L ∪ {i} ⊆ O(bj) ⊆ U ,
which contradicts with the fact that j is charged ξ∗(j, L, U), which is strictly
lower by our assumption that j harms k. ut

Claim 2 At the bid vector bj,k the following hold

(a) Player i is serviced and charged ξ∗(i, L, U).

(b) Player j is serviced and charged more than ξ∗(j, L, U).
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Proof (a) Since j is a sink of G[U \ L], we have that for all k ∈ U \ (L ∪
{i, j}), bi,jk = ξ∗(k, L, U)ξ∗(k, L∪{j}, U) = ξ∗(k, L, U) and bi,ji > ξ∗(i, L, U) =
ξ∗(j, L ∪ {k}, U). Hence, we can apply Lemma 7 for i with L′ = L ∪ {j} and
U ′ = U , since condition (b) is satisfied for i at this pair (induction hypothesis)
and the bid vector satisfies the requirements of this Lemma.

As a result, i ∈ O(bj,k) and ξ(i, O(bi,j)) = ξ∗(i, L ∪ {j}, U) = ξ∗(i, L, U).
(b) From part (a) we get that the set O(bi,j) satisfies that L ∪ {i, j} ⊆

O(bi,j) ⊆ U , and thus the payment of player j is lower bounded by ξ∗(j, L ∪
{i}, U). Since j harms k we get that ξ∗(j, L∪{i}, U) > ξ∗(j, L, U) completing
our proof.

Claim 3 At the bid vector bi the following hold
(a) Player j is not serviced at bi.
(b) Player i is serviced at bi.
(c) L ⊆ O(bi) ⊆ U and every player k ∈ O(bi) \ L, is charged ξ∗(k, L, U).

Proof (a) Assume that player j is serviced at bi. Notice that by VP and the
definition of ε, if j is serviced at bi then her payment cannot exceed ξ∗(j, L, U).
Additionally, notice that the only coordinate bi differs from bi,j is the bid of
player j. Thus, strategyproofness is violated, since from Claim 2 the payment
of j decreases.

(b) Suppose that i is not serviced at bi. Then {i, j} can form a successful
coalition when true values are bi bidding bj , since from Claim 1 the utility of j
increases from zero to ε and the utility of i is kept to zero (she is not serviced
at either input).

(c) By VP and CS we get that L ⊆ O(b) ⊆ U , thus the payment of
every player k that receives the service is lower bounded by ξ∗(k, L, U). By
definition of bi and VP of the mechanism we get the equality for every player
in O(bi) \ (L ∪ {i}). Moreover, from the definition of ε, we conclude the same
for i.

The set Si = O(bi) meets the requirements of condition (b) of Fence Mono-
tonicity player i. This together with Lemma 6 implies the following corollary.

Corollary 2 Condition (b) of Fence Monotonicity is satisfied at L,U .

Condition (c) of Fence Monotonicity

To show that the cost-sharing scheme satisfies the third property of Fence
Monotonicity, at L,U , we need the induction hypothesis only for showing (as
we have already done) that condition (a) of Fence Monotonicity is satisfied at
this pair and specifically only the allocation properties of Lemma 5. Now we
consider inputs for which we do not get anymore directly from CS, that the
players in L surely receive service. The idea is to gradually generalize the bid
vectors and characterize the allocation of the mechanism. The following table
contains allocation properties that any GSP mechanism satisfies.
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Lemma 8 For every bid vector b, where for all i ∈ L, bi > ξ∗(i, L, U), for
all i ∈ U \ L, bi = ξ∗(i, L, U) and for all i /∈ U , bi = −1, it holds that
L ⊆ O(b) ⊆ U and for all i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U).

Notice that we require that the bid of every player in L exceeds its minimum
payment at L,U , ensuring these players strictly prefer to be serviced at some
set in the restriction imposed by L,U . This lemma does not hold anymore.
Intuitively a GSP mechanism may have to exclude an indifferent player in
favor of another that can strictly benefit by his exclusion from the outcome in
order to avoid them from forming a successful coalition.

Proof We will prove our statement by induction on the cardinality of the set
Q = {i ∈ L | bi 6= b∗i }.

Base: Since Q = ∅, we simply apply Lemma 5.

Induction step: For the induction step we will show that L ⊆ O(b) ⊆ U
and for all i ∈ L, ξ(i, O(b)) = ξ∗(i, L, U). Then it is easy to see that every
i ∈ O(b) \ L must be serviced at ξ∗(i, L, U) by VP and the definition of ξ∗.

By the construction of the bid vector we have that O(b) ⊆ U . Consider
now some j ∈ Q. The induction hypothesis implies that j is serviced and
charged ξ∗(j, L, U) at the bid vector (b∗j , b−j). Suppose that j is not serviced
at b resulting in zero utility. Since bj − ξ∗(j, L, U) > 0 she can misreport b∗j
so as to increase her utility to a strictly positive quantity and thus violate
strategyproofness of the mechanism. As a result, j must be serviced at b and
hence by strategyproofness j must be serviced at the same payment. This is
because if the unilateral change of player j can change her payment without
changing his allocation, then in the true values corresponded to the bid vector
where j was charged the higher amount she could misreport in order to increase
her utility.

Now since j is indifferent between the two outcomes group-strategyproofness
requires that the same holds also for the rest of the players. Otherwise if
the true value of player j was the one corresponding to the bid vector that
was strictly worse for some other player i, then j could form a successful
coalition with player i by bidding according to the other bid vector that
gives greater utility to player i. Therefore, it must be that every i ∈ L \ Q
(i ∈ O(b) by CS since bi = b∗i ) is charged the same payment in either input
i.e. ξ(i, O(b)) = ξ(i, O(b∗j , b−j)) = ξ∗(i, L, U) (induction hypothesis). ut

bids allocation of a GSP mechanism
L U \ L /∈ U ∀i ∈ O(b)

Lemma 5 b∗i ξ∗(i, L, U) −1 L ⊆ O(b) ⊆ U ξ(i, O(b)) = ξ∗(i, L, U)
Lemma 8 > ξ∗(i, L, U) ξ∗(i, L, U) −1 L ⊆ O(b) ⊆ U ξ(i, O(b)) = ξ∗(i, L, U)
Lemma 9 > ξ∗(i, L, U) ∈ R −1 O(b) ⊆ U ξ(i, O(b)) ≥ ξ∗(i, L, U)

Table 1 Allocation properties of GSP mechanisms. Every family of inputs we consider is
a subset of the previous one.
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The last property reveals the following important fact about the allocation
of GSP mechanisms: If the bids of all players in a set L ⊆ U are more than
their respective minimum payments at L,U , (and the players in A\U do not
want to participate), then a GSP mechanism never excludes a subset of L from
the outcome in favor of another serviced player, (i.e. so that another player
pays less, because the players from L are not present in the outcome). Loosely
speaking the players in L rule out any outcome C ⊂ U such that there is some
j ∈ C such that ξ(j, C) < ξ∗(j, L, U).

Lemma 9 For every bid vector b, where for all i ∈ L, bi > ξ∗(i, L, U), for all
i ∈ U \ L, bi ∈ R and for all i /∈ U , bi = −1, it holds that: for all i ∈ O(b),
ξ(i, O(b)) ≥ ξ∗(i, L, U).

Proof Let b0 be any bid vector satisfying the conditions of Lemma 8, which
means that for all i ∈ L, b0i > ξ∗(i, L, U), for all i ∈ U \ L, b0i = ξ∗(i, L, U)
and for all i /∈ U , b0i = −1. Then we relax the constrains we put on the bids
of the players in U \ L (the rest of the players bid always according to b0)
and prove that no player becomes serviced at a price strictly less than her
minimum payment at L,U .

Consider some bid vector b. Let Q = {i ∈ U \ L | bi 6= b0i }. However, we
will need some new definitions here. Let

R := {i ∈ Q | i ∈ O(b) and ξ(i, O(b)) > b0i } (1)

When the true values are given by b0 and all the players announce b instead,
the set R represents the set of players who participate in the coalition and lose
utility (it was zero and becomes strictly negative). Finally, let m represent the
number of relations of the form ξ∗(i, L, U) ≤ ξ(i, S) < bi for all i ∈ R, i.e.,

m = |{(i, S) | L ⊆ S ⊆ U, i ∈ S and i ∈ R and ξ∗(i, L, U) ≤ ξ(i, S) < bi}|
(2)

Notice that a set S may contribute more than once to this number and
that if R 6= ∅ then m > 0, since for all i ∈ R, there is some S such that
ξ(i, S) = ξ∗(i, L, U) = b0i < ξ(i, O(b)) ≤ bi, where the last inequality follows
from VP.

We are now ready to state our induction argument. We show that the
allocation of the mechanism satisfies for all i ∈ O(b), ξ(i, O(b)) ≥ ξ∗(i, L, U)
for any bid vector b, where for all i /∈ U \L, b0i = bi using induction on |Q|+m.

Base: For |Q| + m = 0 we have that b = b0 and the allocation property
follows from Lemma 8.

Induction step: Assume that there is some j ∈ O(b) that is charged less
than ξ∗(j, L, U). Since by VP O(b) ⊆ U , either j ∈ L which implies that
b0j > ξ∗(j, L, U) or j ∈ U \ L and thus b0j = ξ∗(j, L, U). In both cases we have
that

j ∈ O(b) and ξ(j,O(b)) < ξ∗(j, L, U) ≤ b0j . (3)

We will prove that there exists at least one successful coalition, contradict-
ing the assumed group-strategyproofness of the mechanism. Note that j /∈ R.
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Case 1: If R ⊂ Q, we construct the bid vector b′, where for every i ∈ R,
b′i = bi and for every i /∈ R, b′i = b0i . We complete the proof of this case
by showing that (Q \ R) ∪ {j} form a coalition when their true values are b′

bidding b.
First, we prove that in the truthful scenario every player i ∈ Q\R has zero

utility and her utility remains non-negative after the misreporting (profile b).
By using the induction hypothesis at b′ (differs from b0 in |R| < |Q| coordi-
nates) we get that for every i ∈ Q \ R such that i ∈ O(b′) (the rest of the
players have obviously zero utility), it holds that ξ∗(i, L, U) ≤ ξ(i, O(b′)) ≤ b′i,
where the last inequality follows from VP. Since i ∈ Q \ R, we get that
b′i = b0i = ξ∗(i, L, U) and thus b′i = ξ(i, O(b′)). Now consider the outcome after
the misreporting. Either i /∈ O(b) and hence she has zero utility after the misre-
porting or i ∈ O(b) and her utility becomes b′i−ξ(i, O(b)) = b0i −ξ(i, O(b)) ≥ 0,
where the last inequality follows from Equation 1 as i ∈ Q \R.

Second, we prove that player j strictly increases her utility. There are
two cases for j: If she is serviced at b′, then the induction hypothesis implies
that she is charged ξ(j,O(b′)) ≥ ξ∗(j, L, U). From Equation 3 we get that j
is serviced after the misreporting and charged ξ(j,O(b)) < ξ∗(j, L, U), thus,
her payment decreases and consequently her utility increases. Now if j is not
serviced at b′, then she has zero utility. From Equation 3 we get that b0j >

ξ(j,O(b)) and since j /∈ R it follows that b0j = b′j . As a result, her utility
increases to b′j − ξ(j,O(b)) > 0.

Case 2: Otherwise if R = Q, then first we show that it must be the case
that for all i ∈ R, bi = ξ(i, O(b)). Assume that the converse holds, i.e., for some
i ∈ R, bi > ξ(i, O(b)). Consider the bid vector (ξ(i, O(b)), b−i). If i is serviced
then by strategyproofness her payment should be the same. As a result, if the
true values are given by (ξ(i, O(b)), b−i) she has zero utility.

Notice that by lowering the bid of player i, it holds that the quantity |Q|+m
is reduced by at least one, since we do not count the relation bi > ξ(i, O(b)) >
ξ∗(i, L, U) anymore. Thus, by the induction hypothesis player j is either not
serviced or she is charged an amount greater than or equal to ξ∗(i, L, U).

We use these facts to show When the true values are given by (ξ(i, O(b)), b−i),
players i and j can form a successful coalition bidding b: The utility of player
i is zero in either scenario, while the utility of player j increases since either
her payment increases or if she was not serviced in the truthful scenario her
utility becomes bj − ξ(j,O(b)) > 0.

As a result, it must be the case that for all i ∈ R, bi = ξ(i, O(b)). Notice
that by VP we have that O(b) ⊆ U (for every i ∈ A\U , it holds that i /∈ R and
thus bi = b0i = −1). Since ξ∗(j, L, U) > ξ(j,O(b)) it must be that L 6⊆ O(b).
We show that when the true values are given by b the players in L \O(b) and
in Q can form a successful coalition bidding b0.

Assume that the true values are given by b. The utility of every i ∈ Q is
zero since they are charged an amount equal to their bids. Obviously, the same
holds for all k ∈ L \O(b).

First, we prove that the utility of every i ∈ Q remains non-negative after
the misreporting. Consider some i ∈ Q such that i ∈ O(b0) (obviously the rest
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players have zero utility). From Lemma 8 it holds that ξ(i, O(b0)) = ξ∗(i, L, U)
and since ξ∗(i, L, U) = b0i (i ∈ U \ L) and b0i < ξ(i, O(b)) = bi, we conclude
that her utility increases to bi − ξ(i, O(b0)) > 0.

Second, we show that the utility of every k ∈ L \ O(b) increases, as it
becomes strictly positive. Since k /∈ Q we get that bk = b0k. Moreover, since
k ∈ L we have b0k > ξ∗(k, L, U) and from Lemma 8 we get that k ∈ O(b0) and
ξ(k,O(b0)) = ξ∗(k, L, U). As a result, her utility becomes bk−ξ(k,O(b0)) > 0.
ut

Using Lemma 9, it is easy to show that any GSP mechanism satisfies
condition (c) of Fence Monotonicity.

Claim 4 Consider any C ⊂ U such that there is some j ∈ C with ξ(j, C) <
ξ∗(j, L, U). At the bid vector bc, where for all i ∈ C, bci = b∗i , for all i ∈ L \C,
bci = ξ∗(i, L, U) + ε, and for all i /∈ C ∪ L, bci = −1, it holds that

(a) for all i ∈ O(bc) \ C, ξ(i, O(bc)) ≥ ξ∗(i, L, U),
(b) C ⊂ O(bc) ⊆ L ∪ C and
(c) for all i ∈ O(bc) \ C, it holds that ξ(i, O(bc)) = ξ∗(i, L, U)

Proof (a) Immediate by applying Lemma 9.
(b) VP and CS imply that C ⊆ O(bc) ⊆ L∪Cj . From (a) and the premises

of the Claim ξ(j, Cj) < ξ∗(j, L, U) we additionally get that C is a strict subset
of O(bc).

(c) From (a) we have that for all i ∈ O(bc) \ C, ξ(i, O(bc)) ≥ ξ∗(i, L, U).
However all of these players have bid ξ∗(i, L, U) + ε, where ε is an arbitrarily
small positive number, smaller than any payment difference, and by VP would
not receive service if they had to pay higher than their bid. So ξ(i, O(bc)) =
ξ∗(i, L, U). ut

Setting T = O(bc) \ C (Claim 4 (b) states that C ⊂ O(bc)), hence, T 6= ∅)
we can conclude that every GSP mechanism satisfies condition (c) of Fence
Monotonicity.

Corollary 3 Condition (c) of Fence Monotonicity is satisfied at L,U .

5 The classes of GSP and Fencing Mechanisms coincide

We complete our characterization by proving that Fencing Mechanisms are
GSP. Throughout this section we fix a cost-sharing scheme ξ that satisfies
Fence Monotonicity, and a valid tie-breaking rule σ for ξ. First, we provide
some technical Lemmas regarding Stability and Fence Monotonicity.

Lemma 10 For every bid vector b and set L with L ⊆ A, there exists a unique
set U with U ⊇ L, such that for all i ∈ U \ L we have bi ≥ ξ∗(i, L, U) and
any other set with the same property is a subset of U . Moreover, the pair L,U
satisfies condition 3. of Stability.
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Proof Consider the family of all sets U such that for all i ∈ U \ L, bi ≥
ξ(i, L, U). First, notice that the set L always satisfies this property, hence,
this family is not empty. Assume towards a contradiction that there exist two
distinct sets U1, U2 in this family none of which is a subset of the other. Then
we show that set U1 ∪ U2 also belongs to this family. Indeed for all i ∈ U1 \ L
we have bi ≥ ξ∗(i, L, U1) ≥ ξ∗(i, L, U1∪U2) as the minimum payment of player
i can only decrease as the set of outcomes, over which the minimum in the
definition of ξ∗ is taken, becomes larger. A similar inequality holds for the
players in i ∈ U2 \ L completing the proof. As a result, this family contains a
unique maximal element.

Now we show that if U is the maximal set with this property, then L,U
satisfy property 3. of stability. Consider some non-empty R ⊆ A \ U . Assume
that for all i ∈ R, bi ≥ ξ∗(i, L, U ∪ R). From Lemma 1 we have that for
all i ∈ U \ L, bi ≥ ξ∗(i, L, U ∪ R) and thus we reach contradiction by the
maximality of U . ut

Lemma 11 Suppose that L,U is a stable pair at the bid vector b and that S is
set with the property that for all i ∈ S we have that bi − ξ(i, S) ≥ 0. (choosing
output S does not violate VP.) If (a) S 6⊆ U , or

(b) there is some i ∈ S with ξ∗(i, L, U) > ξ(i, S),
there exists some non-empty set T ⊆ L \ S, such that for all j ∈ T we have
ξ(j, S ∪ T ) < bj.

Proof We will first show that if S 6⊆ U then there exists some i ∈ S such that
ξ∗(i, L, U ∪ S) > ξ(i, S). Since L,U is stable (property 3.) there exists some
i ∈ S \ U such that bi < ξ∗(i, L, U ∪ S) and since from the initial assumption
ξ(i, S) ≤ bi we get that ξ(i, S) < ξ∗(i, L, U ∪ S)

The rest of the proof is the same for both cases (note that in what follows,
if S ⊆ U then S ∪ U = U). Note that S is a strict subset of U ∪ S, since
L * S. Applying part (c) of Fence Monotonicity we get that there exists a
non-empty T ⊆ L\S such that for all j ∈ T we have ξ(j, S ∪T ) = ξ∗(j, L, U ∪
S) ≤ ξ∗(j, L, U), where the last inequality is by the definition of ξ∗, since
the minimum cannot decrease as the set of outcomes over which it is taken
becomes larger. From property 1. of stability and since T ⊆ L, for all j ∈ T
we have ξ∗(j, L, U) < bj . Consequently for all j ∈ T we have ξ(j, S ∪ T ) < bj .
ut

Lemma 12 Suppose that L ⊆ S ⊆ U and that there exists a non-empty T ⊆
A\ S such that for all i ∈ T we have bi ≥ ξ(i, S ∪ T ) and that for at least one
player from T the inequality is strict. Then L,U is not a stable set at the bid
vector b.

Proof Suppose towards a contradiction that L,U is stable at b and that there
exists some T ⊆ A\ S, such that for all i ∈ T , bi ≥ ξ(i, S ∪ T ) and that for at
least one player the inequality is strict.

Since L ⊆ S ∪T ⊆ U ∪T from the definition of ξ∗ we get that for all i ∈ T
we have ξ∗(i, L, U ∪ T ) ≤ ξ(i, S ∪ T ).
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If T ⊆ U , then there exists some i ∈ T such that bi > ξ(i, S ∪ T ) ≥
ξ(i, L, U) ≥ ξ∗(i, L, U). Since T ⊆ A\L this contradicts with stability (condi-
tion 2.) of b at L,U .

If T 6⊆ U , then T \ U is not empty and for all i ∈ T \ U we have bi ≥
ξ(i, S ∪ T ) ≥ ξ∗(i, L, U ∪ T ), which contradicts with stability (condition 3.) of
b at L,U . ut

5.1 Uniqueness and Group-strategyproofness

Lemma 13 For the inputs where there exists a stable pair, it is unique.

Proof Assume that there are two stable pairs L1, U1 and L2, U2. First we show
that L1 = L2. Suppose first that L1 6= L2. Due to symmetry we only need
to reach a contradiction in the case where L2 6⊆ L1, i.e., there exists some
j ∈ L2 \ L1. .

By Fence Monotonicity (part (a)) there exists a set S2 such that L2 ⊆
S2 ⊆ U2 and ξ(i, S2) = ξ∗(i, L2, U2) for all i ∈ S2. Notice that for all ∈ S2,
bj ≥ ξ(j, S2), where strict inequality holds only if j ∈ L2. The idea is to apply
Lemma 11 and get that there exists a non-empty T ⊆ L \S2, such that for all
i ∈ T we have bi > ξ(i, S2 ∪ T ). We will then apply Lemma 12 to show that
L2, U2 is not stable at b which contradicts our initial assumption.

It only remains to show that we can apply Lemma 11. If S2 6⊆ U1 this is
immediate. Suppose that S2 ⊆ U1. If j ∈ L2 \ L1 then also j ∈ U1 \ L1 (since
j /∈ L1 and j ∈ S2 ⊆ U1). Thus, from stability (condition 2.) of L1, U1, we get
that bj = ξ∗(j, L1, U1) and from stability (condition 1.) of L2, U2 and since
j ∈ L2, we get that bj > ξ(j, S2). Therefore, we get that ξ(j, S2) < ξ∗(j, L1, U1)
and consequently S2 satisfies the requirements of Lemma 11.

We showed that L1 = L2 = L. Suppose towards a contradiction that
U1 6= U2. From Lemma 10 there exists a unique maximal set U such that
bi ≥ ξ∗(i, L, U) for all i ∈ U . Consequently U1, U2 are subsets of U and at
least one of them, say U1 a proper subset of U . Then the players in U \ U1

contradict stability (condition 3.). ut

Lemma 14 Fencing mechanisms are GSP at inputs where a stable pair exists.

With this we mean that given two bid vectors where there exists a stable
pair at both, then the allocation of a Fencing mechanisms satisfies group-
strategyproofness locally, i.e., if we just restrict the true values to be either of
these vectors and have the agents misreport the other.

Proof Let b and b′ be two bid vectors, and let L,U and L′, U ′ be their corre-
sponding unique (from Lemma 13) stable pairs and O(b) and O(b′) the cor-
responding outputs. Assume towards a contradiction that some of the players
can form a successful coalition when the true values are b reporting b′.

We will first show that any player i served in the new outcome, i ∈ O(b′),
has non-negative utility i.e. bi ≥ ξ(i, O(b′)). Take some i that is output in
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O(b′). If bi = b′i then it holds trivially since the mechanism satisfies VP at the
outcome O(b′). If bi 6= b′i then i changes his bid to be part of the coalition
and consequently his utility after this coalition is non-negative, which gives
bi − ξ(i, O(b′)) ≥ 0.

The next step is to apply Lemma 11 to show that there exists some non-
empty T ⊆ L \ O(b′) such that for all i ∈ T we have bi > ξ(i, O(b′) ∪ T ). If
O(b′) 6⊆ U then the premises of the Lemma hold trivially.

Suppose that O(b′) ⊆ U . For the coalition to be successful the utility of
at least one player j increases strictly when the players bid b′ consequently
j ∈ O(b′) and bj − ξ(j,O(b′)) > 0. We will show that ξ∗(j, L, U) > ξ(j,O(b′)).
If j is not served at b and since O(b′) ⊆ U from stability we get that j ∈ U \L
and bj = ξ∗(j, L, U) > ξ(j,O(b′)). If j is served at b then her payment equals
ξ∗(j, L, U) by the definition of the mechanism and in order that she profits
strictly it must be ξ(j,O(b′)) < ξ∗(j, L, U), so we can again apply Lemma 11.

Finally we will show that for all i ∈ T we have bi = b′i. After the manip-
ulation the players in T are not serviced, while as T ⊆ L from stability we
have that in the truthful scenario the players in T are serviced with positive
utility. Consequently the players in T wouldn’t have an incentive to be part
of the coalition and change their bids.

Putting everything together we get that there exists a T ⊆ A \O(b′) such
that for all i ∈ T we have b′i > ξ(i, O(b′)∪T ), which by Lemma 12 contradicts
our initial assumption that L′, U ′ is stable at b′. ut

5.2 Existence of Stable Pairs

The next Lemma completes our statement that Fencing Mechanisms are GSP.

Lemma 15 For every bid vector b there exists a unique stable pair. Conse-
quently, Fencing Mechanisms are GSP.

Proof Let b∗i be any value that satisfies b∗i > maxS⊆A ξ(i, S). We will show
that there exists a stable pair at any input b by induction on the number m
of coordinates that are less than b∗i , i.e. on the number m = |{i | bi < b∗i }|.

Base: For m = 0, we only have to show that there exists a stable pair for
the bid vector (b∗1, . . . , b

∗
n) and A,A is a stable pair.

Induction Step: Suppose that if a bid vector has m− 1 coordinates that
are less than b∗i , then it has a stable pair. We will show that if a bid vector b
has m coordinates that are less than b∗i then it also has a stable pair. We will
suppose towards a contradiction that there exists no stable pair at b.

We first need some definitions. Let L∗ := {i | bi ≥ b∗i } and U∗ the
corresponding (from Lemma 10) maximal set. Notice that for all i ∈ L∗,
bi ≥ b∗i > ξ∗(i, L∗, U∗) by the definition of b∗i , which implies that the pair
L∗, U∗ satisfies the first condition of stability. Moreover, from Lemma 12 we
get that the third condition of stability is satisfied for L∗, U∗ as well. Thus,
as L∗, U∗ cannot be stable at b (from our assumption), the set W = {i | i ∈
U∗ \ L∗ and bi > ξ∗(i, L∗, U∗)} should be non-empty.
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For each i ∈ W we define a corresponding pair Li, Ui as follows: The pair
Li, Ui is the unique (by Lemma 13) stable pair of (b∗i , b−i), which exists by the
induction hypothesis.

Claim 5 If Li, Ui is the stable pair of (b∗i , b−i), then
(a) L∗ ∪ {i} ⊆ Li and (b) Ui ⊆ U∗.
(c) If j ∈ Li \ (L∗ ∪ {i}) then j ∈W and bj > ξ∗(L∗, U∗) .

Proof (a) Using the definition of L∗ we get that L∗∪{i} contains all the players
who have bid higher than any payment of the mechanism in (b∗i , b−i). Since Li
is stable at (b∗i , b−i), each one of these players, who have bid strictly higher than
any payment of the mechanism, should be serviced (any value higher than any
payment satisfies the definition of CS for Fencing Mechanisms), and if they are
serviced they obviously have strictly positive utility, and thus L∗ ∪ {i} ⊆ Li.

(b) The idea is to show that for all j ∈ (U∗∪Ui)\L∗, bj ≥ ξ∗(j, L∗, U∗∪Ui)
and since we defined U∗ be the maximal set with this property, we get that
Ui ⊆ U∗.

From definition of U∗ we have that for all j ∈ U∗ \L∗, bj ≥ ξ∗(j, L∗, U∗) ≥
ξ∗(j, L∗, U∗ ∪ Ui), where the last inequality follows from Lemma 1.

Now consider some j ∈ Ui \ U∗ (j 6= i). Since Li, Ui is stable at (b∗i , b−i)
we get that bj ≥ ξ∗(j, Li, Ui) ≥ ξ∗(j, L∗, Ui ∪U∗) by applying Lemma 1, since
from (a) L∗ ⊂ Li.

(c) From (a),(b) and Lemma 1 we have that ξ∗(j, Li, Ui) ≥ ξ∗(j, L∗, U∗).
As we defined Li, Ui to be the stable pair at (b∗i , b−i) and j ∈ Li, for j 6= i we
have bj > ξ∗(j, Li, Ui) ≥ ξ∗(j, L∗, U∗) and as j /∈ L∗, we have j ∈W . ut

Claim 6 If there exists no stable pair at b, then for all i ∈W we have
(a) bi ≤ ξ∗(i, Li, Ui), and (b) L∗ ∪ {i} ⊂ Li.

Proof (a) The pair Li, Ui is stable at (b∗i , b−i) (by definition of Li, Ui) but it
is not stable at b (from our assumption that there exists no stable pair at b).
Since the two bid vectors differ only on the i-th coordinate we deduce that
stability (condition 1. as i ∈ Li) is not satisfied by the i-th coordinate of b,
thus bi ≤ ξ∗(i, Li, Ui).

(b) From Claim 5 (a) we already have that Li ⊇ L∗∪{i}. Suppose towards
a contradiction that Li = L∗ ∪ {i}. From Fence Monotonicity (condition (b))
we get that there exists some Si, where L∗ ⊆ Si ⊆ U∗ and i ∈ Si such that
for all j ∈ Si \ L∗ we have ξ(j, Si) = ξ∗(j, Li, Ui).

The idea is to show that Li ⊆ Si ⊆ Ui, which implies that ξ∗(i, Li, Ui) ≤
ξ(i, Si) = ξ∗(i, L∗, U∗). Considering also that ξ∗(i, L∗, U∗) < bi, because i ∈
W , we get then that ξ∗(i, Li, Ui) < bi, contradicting the inequality we showed
in (a).

It only remains to show that Li ⊆ Si ⊆ Ui. Notice first that Li ⊆ Si since
Li = L∗∪{i}. Moreover, since for all j ∈ Si \Li, it holds that bj ≥ ξ(j, Si) and
the bids of these players are the same at (b∗i , b−i), stability of Li, Ui (condition
3) implies that Si ⊆ Ui, because otherwise Si \Ui 6= ∅ and its elements would
violate condition 3. of stability.
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Since W 6= ∅ there exists some i ∈W such that Li has minimum cardinal-
ity, i.e. i = arg mini∈W |Li|. By Claim 6 (b) there exists some j ∈ Li\(L∗∪{i})
and by Claim 5 (c) j ∈W . We will show that Lj ⊂ Li contradicting the choice
of i.

Claim 7 If there exists no stable pair at b and j ∈ Li \ (L∗ ∪ {i}) then
(a) The pair Li, Ui is stable at the bid vector (b∗i , b

∗
j , b−{i,j}).

(b) ξ∗(j, Lj , Uj) > ξ∗(j, Li, Ui) and i /∈ Lj .
(c) If there exists some k ∈ Lj \ Li, then the mechanism is not GSP at

inputs where a stable pair exists.

Proof (a) The pair Li, Ui is stable at bid vector (b∗i , b
∗
j , b−{i,j}), since Li, Ui is

stable at (bi, b−i) and since raising the bid of player j (j ∈ Li from our initial
assumption) to b∗j does not affect its stability.

(b) From stability of Li, Ui at (b∗i , b−i) we get that bj > ξ∗(j, Li, Ui),
while from part (a) of Claim 6 we get that ξ∗(j, Lj , Uj) ≥ bj . Consequently
ξ∗(j, Lj , Uj) > ξ∗(j, Li, Ui).

Supposing towards a contradiction that i ∈ Lj we also get in a similar way
as before that the pair Lj , Uj is stable at (b∗i , b

∗
j , b−{i,j}). By Lemma 13 these

two pairs coincide, which is a contradiction because we just showed that the
payment of j is different.

(c) We will show that if there exists some k ∈ Lj \Li then the mechanism
is not GSP at inputs, where a stable pair exists. Observe that k 6= i, j.

Consider first the vector bi,j := (b∗i , b
∗
j , b−{i,j}), which stable pair is Li, Ui

from part (a). As k /∈ Li either k is not serviced, or if k is serviced, then her util-
ity is zero. As for j she is serviced with payment ξ∗(j, Li, Ui) < ξ∗(j, Lj , Uj) =
ξ(j,O(b∗j , b−j)) (from (a)).

Consider then bj := (b∗j , b−j), where Lj , Uj is stable. As k ∈ Lj and k is
serviced and bk > ξ(k,O(b∗j , b−j)).

Resuming player j strictly prefers O(bi,j) to O(bj), while for k the situa-
tion is exactly the opposite. The idea is to construct a bid vector b′ where i
has zero utility and either {i, j} or {i, k} is a successful coalition. Let b′ =
(ξ(i, O(bi,j)), b∗j , b−{i,j}) and notice that induction hypothesis implies that
there is a stable pair at b′. Moreover, observe that the three bid vectors differ
only on the bid of player i and consequently from strategyproofness, at every
input i is served, she is charged ξ(i, O(bi,j)). This implies that if i is served
at b′ she is charged an amount equal to her bid. Moreover, i is serviced at
bj in the degenerate case where b′ = bj as otherwise V P would imply that
ξ(j,O(bj)) ≤ bjj < bi,jj = ξ(j,O(bi,j)). In every case we have that i has zero

utility at b′ and bj .
Observe first that k must be serviced at b′ and charged ξ(k,O(b′)) ≤

ξ(k,O(bj)) as otherwise {i, k} would have been able to form a successful
coalition when the true values are b′ bidding bj . Similarly we can show that
ξ(j,O(b′)) ≤ ξ(j,O(bi,j)), excluding the degenerate case b′ = bj , because oth-
erwise {i, j} would have been able to form a successful coalition when the true
values are b′ bidding bi,j (the utility of i is kept to zero as in the truthful
scenario).
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As a result players j and k strictly prefer O(b′) to O(bj) and O(bi,j) re-
spectively. If i ∈ O(b′) then {i, k} when true utilities are given by bi,j can
form a successful coalition bidding b′ strictly increasing the utility of k, while
keeping the utility of i constant, since she is still served with he same payment.
If i /∈ O(b′) then we deduce that {i, j} when the true utilities are given by
bj can form successful coalition bidding b′ strictly increasing the utility of j,
while keeping the utility of i to zero. ut

Now since j ∈ W and from Claim 7 i /∈ Lj and for every k ∈ Lj we have
that also k ∈ Li (otherwise Claim7 (c) contradicts Lemma 14), we get that
Lj ⊂ Li, which completes the proof. ut

5.3 Necessity of Stability and Valid tie-breaking.

Next, we show that the allocation of every GSP mechanism satisfies Stability
and uses a Valid tie-breaking rule. Since its cost-sharing scheme must satisfy
Fence Monotonicity, we can prove the following generalization of Lemma 8.

Lemma 16 Let L ⊆ U ⊆ A. For every bid vector b such that L,U is stable,
it holds that L ⊆ O(b) ⊆ U and for all i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U).

Proof Notice that the only difference between the bid vectors we consider here
and the ones we considered in Lemma 8 is that there every i ∈ A \ U could
only bid −1. Our proof here uses again a similar induction on |Q|, where
Q = |{i ∈ L | bi 6= b∗i }|. We show that L ⊆ O(b) ⊆ U and for all i ∈ O(b),
ξ(i, O(b)) = ξ∗(i, L, U).

Base: First, by CS we have that L ⊆ O(b). Next, we show that no player
from A \ U is serviced. Suppose towards a contradiction that O(b) \ U 6= ∅,
and let R := O(b) \ U the subset of players of A \ U who receive service. We
will show that VP is violated. Because L,U are stable, there is some i ∈ R,
such that bi < ξ∗(i, L, U ∪R) ≤ ξ(i, O(b)) (since L ⊆ O(b) ⊆ U ∪R) and thus
we reach a contradiction.

As a result, it holds that L ⊆ O(b) ⊆ U . Thus, for every i ∈ O(b), we
have that ξ(i, O(b)) ≥ ξ∗(i, L, U)). By VP we get the equality for every i ∈
O(b)\L. Now assume that the previous inequality is strict for some j ∈ L. We
show that the players in (A \ U) ∪ {j} can form a successful coalition, where
every i /∈ U announces −1. The utilities of these players remain zero after the
misreporting and applying Lemma 8 we get that j is serviced and charged
ξ∗(j, L, U) < ξ(j,O(b)).

Induction Step: We show that L ⊆ O(b) and for all i ∈ L, ξ(i, O(b)) =
ξ∗(i, L, U) exactly like in the proof of Lemma 8. If some i ∈ Q was not serviced
or was charged an amount higher than ξ∗(i, L, U), then she could report b∗i .
According to the induction hypothesis at (b∗i , b−i) she is serviced and charged
ξ∗(i, L, U) which violates strategyproofness.

As a result Q ⊆ O(b) and together with CS we get that L ⊆ O(b). Hence,
the payment of every i ∈ L is at least ξ∗(i, L, U) (we have already shown that
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this is equal for players in Q). If some player i ∈ L \ Q is charged a higher
amount, then she can form a successful coalition with any player in j ∈ Q,
where j will report b∗j and according to the induction hypothesis the payment
of player i will decrease to ξ∗(i, L, U).

Now since L ⊆ O(b) in a similar way to the induction base we can show that
U ⊇ O(b). Thus, this restriction together with the stability of L,U , implies
that for every i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U). ut

Given any GSP mechanism (O, ξ) Theorem 1 implies that ξ satisfies Fence
monotonicity. Also, Lemmas 15 and 16 imply that L ⊆ O(b) ⊆ U where
L,U is the unique stable pair at b and also for all i ∈ O(b), ξ(i, O(b)) =
ξ∗(i, L, U). Hence, we can construct a valid tie-breaking rule σ for ξ such that
the mechanism coincides with the Fencing mechanism induced by ξ, σ.

6 Budget Balance and Complexity

We demonstrate the use of our characterization by showing that even in the
case of three players GSP mechanisms fail in having a constant budget balance.

Proposition 1 Let ξ be a cost sharing scheme
(i) If it satisfies condition (a) of Fence Monotonicity for all L,U with

|U \ L| = 1, then it satisfies semi-cross-monotonicity.
(ii) If it satisfies conditions (b) of Fence Monotonicity for all L,U with

|U \ L| = 2 and (c) of Fence Monotonicity for all L,U with |U \ L| = 1, then
it satisfies the following property: For all S ⊆ A and all distinct i, j ∈ S, if
ξ(j, S \ {i}) < ξ(j, S) then ξ(i, S \ {j}) = ξ(i, S).

Proof (i) We apply condition (a) of Fence Monotonicity for L = S \ {i} and
U = S. It follows that all players k ∈ S \ {i} achieve their minimum payment
ξ∗(k, S \{i}, S) at the same set of serviced players, either all when the serviced
set is S, or all when it is S \ {i}.

There are two cases: If there exists some player j ∈ S such that ξ(j, S \
{i}) < ξ(j, S), then this minimum payment is achieved when the set of players
that receive service is S \ {i} and consequently ξ(k, S \ {i}) ≤ ξ(k, S) for all
k ∈ S \ {i}. Otherwise if ξ(j, S \ {i}) > ξ(j, S), then this minimum payment
is achieved when the set of players that receive service is S and consequently
ξ(k, S \ {i}) ≥ ξ(k, S) for all k ∈ S \ {i}.

(ii) We will first use condition (b) of Fence Monotonicity to show that
ξ(i, S \ {j}) ≤ ξ(i, S). Let L = S \ {i, j} and U = S. As we assumed that
ξ(j, S\{i}) < ξ(j, S), it follows that ξ∗(j, L, U) = ξ(j, S\{i}), (since S\{i} and
S are the only sets, within the restriction of the mechanism we consider, that
contain j). From condition (b) of Fence Monotonicity there must be a set Si
with L ⊆ Si ⊆ U , such that i ∈ Si and for all k ∈ Si \L, ξ(k, Si) = ξ∗(k, L, U).
Since ξ∗(j, L, U) = ξ(j, S \ {i}), it is impossible that Si = S and consequently
Si = S \ {j}. As player i achieves her minimum payment at S \ {j} we get
that ξ(i, S \ {j}) ≤ ξ(i, S).
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Now we will use condition (c) of Fence Monotonicity to show that ξ(i, S \
{j}) ≥ ξ(i, S). Let L = S \ {j}, U = S,C ∪ {j} = S \ {i}. Now ξ(j, S \ {i}) <
ξ(j, S) = ξ∗(j, L, U). Since L \ (S \ {i}) = {i}, T = {i} and condition (c) of
Fence Monotonicity implies that ξ(i, S \ {i} ∪ T ) = ξ∗(i, L, U), i.e. ξ(i, S) =
ξ∗(i, S \{j}, S). Consequently ξ(i, S) ≤ ξ(i, S \{j}). Putting both inequalities
together we get ξ(i, S) = ξ(i, S \ {j}). ut

Proposition 1 shows exactly how one can derive the two necessary condi-
tions for group-strategyproofness, which were identified by Immorlica et. al. [6]:
Part (i) of this Proposition shows how we can derive semi-cross-monotonicity
and part (ii) how we can derive the condition identified in Remark B.1 from [6]
(Remark B.1 is a special case of part (ii), namely they showed that if ξ(i, S \
{j}) ≤ ξ(i, S) and ξ(j, S \ {i}) ≤ ξ(j, S), then at most one equality can be
strict). The two conditions they identified are obtained if we apply Fence
Monotonicity for cases when U \ L contains either one or two players, i.e.,
when we restrict the outcome space to only two or four different possible out-
comes.

Theorem 3 There are cost function families where every GSP mechanism
has arbitrarily poor budget balance ratio.

Proof Let A = {1, 2, 3}. Consider the cost sharing function defined on A
as follows: C({1, 2}) = C({1, 3}) = 1, C({1}) = C({2}) = C({3}) = x,
C({2, 3}) = x2 + x and C({1, 2, 3}) = x3 + x2 + x, where x ≥ 1. We show
that there is no 1

x -budget balanced cost sharing scheme, that satisfies Fence
Monotonicity.

Assume by contradiction that there is a α-budget balanced cost sharing
scheme that satisfies Fence Monotonicity for C where 1 ≥ α > 1

x .
First, we consider payments of the players 2 and 3 at the sets {1, 2} and

{1, 3} respectively. From the upper bound of budget balance we have that
ξ(2, {1, 2}) ≤ 1 and ξ(3, {1, 3}) ≤ 1. From Proposition 1 (ii) it cannot be the
case that both of these players payment increases at the set {1, 2, 3}. That is
either ξ(2, {1, 2, 3}) ≤ 1 or ξ(3, {1, 2, 3}) ≤ 1 (or both). W.l.o.g. we assume
that ξ(2, {1, 2, 3}) ≤ 1. We consider now two cases for ξ(2, {2, 3}).

Case 1 : Suppose that ξ(2, {2, 3}) ≤ 1. From the lower bound of budget-
balance at the set {2}, we have that ξ(2, {2}) > 1, and thus ξ(2, {2, 3}) <
ξ(2, {2}). We apply Proposition 1 (ii) and deduce that ξ(3, {2, 3}) ≤ ξ(3, {3}) ≤
C(3) = x. Thus, the total sum of the shares at the set {2, 3} is ξ(2, {2, 3}) +
ξ(3, {2, 3}) ≤ x + 1, which contradicts our assumption about the budget bal-
ance of the mechanism, since C({2, 3}) = x2 + x.

Case 2 : Suppose that ξ(2, {2, 3}) > 1 ≥ ξ(2, {1, 2, 3}). Notice that the
contra-positive implication of Proposition 1 (i) implies that ξ(3, {1, 2, 3}) ≤
ξ(3, {2, 3}) ≤ C({2, 3}) − ξ(2, {2, 3}) < x2 + x − 1. Moreover, as the pay-
ment of player 2 decreases from {2, 3} to {1, 2, 3}, Proposition 1 (ii) implies
that the payment of player 1 doesn’t increase from {1, 3} to {1, 2, 3}, i.e.
ξ(1, {1, 2, 3, }) ≤ ξ(1, {1, 3}) ≤ C({1, 3}) = 1. Now summing the shares at
the set {1, 2, 3}, we get that ξ(1, {1, 2, 3}) + ξ(2, {1, 2, 3}) + ξ(3, {1, 2, 3}) ≤
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x2 + x + 1, which is again contradicts our budget balance assumption, since
C({1, 2, 3}) = x3 + x2 + x. ut

Notice that Fencing Mechanism run in exponential time, as the only way
we know to compute its outcome is to search exhaustively all possible pairs
and check if they are stable. In fact, we only need to search the lower set L,
since there is a polynomial time algorithm (which is defined in the proof of
the next theorem) for checking if there is a set U such that L,U is stable.

A natural question that arises is if it is computationally more efficient to
find the appropriate outcome than identifying the stable pair.

Theorem 4 Suppose that we are given the outcome of a GSP mechanism at
b. Given polynomial access to ξ∗(i, L, U) for all L ⊆ U ⊆ A and all i ∈ U , we
can identify the stable pair in polynomial time.

Proof Consider the following process, which takes as input a bid vector b and
a set L.

repeat
U ← L ∪ {i ∈ U \ L | bi ≥ ξ∗(i, L, U)}

until For all i ∈ U \ L, bi ≥ ξ∗(i, L, U)

We will prove that if we feed this process with the lower set L of the stable
pair at b, then the outcome is the upper set of the stable pair.

Obviously by the definition of the process, for its final set U it holds that
for all i ∈ U , bi ≥ ξ∗(i, L, U). First, we show that U is the maximal set with
this property.

Assume that there is some U ′ with U ′ 6⊆ U , that satisfies this property,
then we have that for all i ∈ (U ∪ U ′) \ L, bi ≥ ξ∗(i, L, U ∪ U ′). Thus, it is
impossible that the players in U ∪U ′ are removed at any step of the previous
process, contradicting our assumption that U 6= U ′ ∪U is the outcome of this
process.

Now consider the upper set U ′′ of the stable pair at b. Since U ′′ satisfies this
property it follows that U ′′ ⊆ U . Notice that if U ′′ ⊂ U 6= ∅, then the elements
of U \ U ′′ would violate stability of L,U ′′. Thus, U ′′ = U and consequently
this process outputs the upper set of the stable pair.

As a result, given an outcome S of a GSP mechanism we can compute
L := {i ∈ S | bi > ξ(i, S)} and use this process to find the upper set U .
The time-complexity of this algorithm is polynomial in the number of players
assuming that we have polynomial-time access to every ξ∗(i, L, U) for all L ⊆
U ⊆ A and all i ∈ U . ut

7 Conclusion and future directions

We believe that the most interesting future directions are the following: How
can our characterization be applied for obtaining cost-sharing mechanisms
with better budget-balance guarantees or lower bounds for specific problems?
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Does there exist a polynomial-time algorithm for finding the allocation of
a cost-sharing scheme that satisfies Fence Monotonicity or maybe can we show
that the problem of finding a stable pair is computationally hard? Given such a
result, how should our characterization be restricted when we add tractability
as an additional requirement?

Finally, our characterization could be used as a guidance for characteriz-
ing mechanisms for specific cost-sharing problems which can more effectively
capture the hardness of the problem.
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A Examples of Mechanisms that violate just one part of Fence
Monotonicity and are not GSP

We will give three representative examples to illustrate, why a cost sharing scheme, which
does not satisfy Fence Monotonicity, cannot give rise to a group-strategyproof mechanism.
We chose our examples in a way that only one condition of Fence Monotonicity is violated
and only at a specific pair L,U . (In fact in condition (c), the violation is present at two
pairs, however it can be shown that this is unavoidable.)

Example 1 (a)
Let A = {1, 2, 3, 4}. We construct a cost sharing scheme, such that condition (a) of

Fence Monotonicity is not satisfied at L = {1, 2} and U = {1, 2, 3, 4}, as follows.

ξ 1 2 3 4

{1,2,3,4} 30 30 30 30
{1,2,3} 20 30 30 −
{1,2,4} 30 20 − 30
{1, 3, 4} 30 − 20 30
{2, 3, 4} − 30 30 20

ξ 1 2 3 4

{1,2} 30 30 − −
{1, 3} 20 − 30 −
{1, 4} 30 30 − −
{2, 3} − 30 30 −
{2, 4} − 20 − 30

ξ 1 2 3 4

{3, 4} − − 30 30
{1} 30 − − −
{2} − 30 − −
{3} − − 30 −
{4} − − − 30

Consider the bid vector b := (b∗1, b
∗
2, 30, 30). Notice that players 3 and 4 are indifferent

to being serviced or not, as the single value they may be charged as payment equals their
bid. Moreover, notice that either player 1 or player 2 (or both) must pay 30 strictly over
their minimum payment 20 under this restriction. Without loss of generality assume that
ξ(1, O(b)) = 30. Consider the bid vector b′ := (b∗1, b

∗
2, b
∗
3,−1). By VP and CS it holds that

O(b′) = {1, 2, 3} and thus ξ(1, O(b′)) < ξ(1, O(b)). Notice that the utilities of players 3 and
4 remain zero, and consequently {1, 3, 4} form a successful coalition. In a similar manner we
prove the existence of successful coalition when ξ(2, O(b)) = 30.

Example 2 (b)
Let A = {1, 2, 3, 4}. We construct a cost sharing scheme, such that condition (b) of

Fence Monotonicity is not satisfied at L = {1, 2} and U = {1, 2, 3, 4} for player 3, as follows.
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ξ 1 2 3 4

{1,2,3,4} 30 30 30 30
{1,2,3} 30 30 40 −
{1,2,4} 30 30 − 20
{1, 3, 4} 30 − 30 30
{2, 3, 4} − 30 30 30

ξ 1 2 3 4

{1,2} 30 30 − −
{1, 3} 30 − 30 −
{1, 4} 30 − − 30
{2, 3} − 30 30 −
{2, 4} − 30 − 30

ξ 1 2 3 4

{3, 4} − − 30 30
{1} 30 − − −
{2} − 30 − −
{3} − − 30 −
{4} − − − 30

Consider the bid vector b3,4 := (b∗1, b
∗
2, 35, b∗4). Strategyproofness implies that 3 ∈

O(b3,4), since otherwise if she is not serviced (zero utility), she can misreport b∗3 chang-
ing the outcome to {1, 2, 3, 4} and increasing her utility to 35− 30 > 0.

Next, consider the bid vector b4 := (b∗1, b
∗
2, 30, 25). Assume that 4 /∈ O(b4). Moreover,

notice that by VP it is impossible that 3 ∈ O(b4). Thus, {3, 4} can form a successful coalition
bidding b′ = (b∗1, b

∗
2,−1, b∗4), changing the outcome to {1, 2, 4} increasing the utility of player

4 to 25− 20 > 0, while keeping the utility of player 3 at zero.

Finally, consider the bid vector b3 := (b∗1, b
∗
2, 35, 25). Notice that the b3 differs with b4

and b3,4 in the coordinates that correspond to players 3 and 4 respectively. Like in the case
of b4 the only possible outcomes by VP and CS at b3 are {1, 2, 4} and {1, 2}.

Assume that player 4 is serviced at b3, which implies that ξ(4, O(b4)) < ξ(4, O(b3,4)).
This contradicts strategyproofness, since when the true values are b3,4, player 4 can bid
according to b3 in order to decrease her payment and still being serviced.

Now, assume that player 4 is not serviced at b3. Then {3, 4} can form a successful
coalition when true values are b3 bidding b4, increasing the utility of player 4 to 25−20 > 0,
while keeping the utility of player 3 at zero.

Example 3 (c)

Let A = {1, 2, 3, 4}. This time we construct a cost sharing scheme, such that part (c) is
not satisfied for L = {1, 2} (or {1, 2, 3}) and U = {1, 2, 3, 4} and specifically for Ci = {3, 4}
and i = 3.

ξ 1 2 3 4

{1,2,3,4} 30 30 30 30
{1,2,3} 20 20 30 −
{1,2,4} 30 30 − 30
{1, 3, 4} 30 − 30 30
{2, 3, 4} − 30 30 30

ξ 1 2 3 4

{1,2} 20 20 − −
{1, 3} 20 − 20 −
{1, 4} 30 30 − −
{2, 3} − 20 20 −
{2, 4} − 30 − 30

ξ 1 2 3 4

{3, 4} − − 20 30
{1} 30 − − −
{2} − 30 − −
{3} − − 30 −
{4} − − − 30

Suppose that the values are b := (25, 25, b∗3, 30). The feasible by VP outcomes are {1, 2, 3},
{1, 3}, {2, 3}, {3, 4} and {3}. Notice that player 4 has zero utility regardless of the outcome.

Assume that O(b) 6= {1, 2, 3} and w.l.o.g that 1 /∈ O(b). Then {1, 2, 4} can form a
successful coalition bidding b′ := (b∗1, b

∗
2, b
∗
3,−1) increasing the utility of player 1 to 25 > 0

without decreasing the utility of player 2 (either O(b) = {2, 3} and ξ(2, O(b′)) = ξ(2, O(b))
and her utility remains the same utility or 2 /∈ O(b) and her utility increases to 25 > 20,
like in the case of player 1) and keeping the utility of player 4 at zero.

Finally, assume that O(b) = {1, 2, 3}. Then {3, 4} can form a successful coalition bid-
ding b′′ := (25, 25, b∗3, b

∗
4). Obviously {3, 4} ⊆ O(b′′). Notice that VP excludes each of the

following outcomes: {1, 3, 4}, {2, 3, 4} and {1, 2, 3, 4}. As a result, O(b′′) = {3, 4} implying
that the utility of player 3 increases, as ξ(3, O(b)) > ξ(3, O(b′′)), while player 4 keeps her
utility at zero.
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