
The Geometry of Truthfulness.

Angelina Vidali∗

September 30, 2009

Abstract

We study the geometrical shape of the partitions of the input space created by the
allocation rule of a truthful mechanism for multi-unit auctions with multidimensional
types and additive quasilinear utilities. We introduce a new method for describing the
allocation graph and the geometry of truthful mechanisms for an arbitrary number of
items(/tasks). Applying this method we characterize all possible mechanisms for the
case of three items.

Previous work shows that Monotonicity is a necessary and sufficient condition for
truthfulness in convex domains. If there is only one item, monotonicity is the most
practical description of truthfulness we could hope for, however for the case of more than
two items and additive valuations (like in the scheduling domain) we would need a global
and more intuitive description, hopefully also practical for proving lower bounds. We
replace Monotonicity by a geometrical and global characterization of truthfulness.

Our results apply directly to the scheduling unrelated machines problem. Until now
such a characterization was only known for the case of two tasks. It was one of the tools
used for proving a lower bound of 1 +

√
2 for the case of 3 players. This makes our work

potentially useful for obtaining improved lower bounds for this very important problem.
Finally we show lower bounds of 1 +

√
n and n respectively for two special classes of

scheduling mechanisms, defined in terms of their geometry, demonstrating how geomet-
rical considerations can lead to lower bound proofs.

1 Introduction

Mechanism design is the branch of game theory that tries to implement social goals taking
into account the selfish nature of the individuals involved. Mechanism design constructs
allocation algorithms that together with appropriate payments elicit from the players their
secret values or preferences. In this paper we give a characterization result that reveals the
exact geometry of truthful mechanisms. The goal of this paper is to understand and visualize
truthful mechanisms better. We realized the need for such a result while trying to improve
the lower bound for the scheduling selfish unrelated machines problem [15, 6, 11], however
the result is more broadly applicable and interesting from itself continuing a line of research
attempting to grasp truthfulness better [18, 10, 13, 1, 4]. What differentiates our work from
this line of research is that we fully exploit the linearity in the geometry of additive valuations.

There exists a simple necessary and sufficient condition for truthfulness in convex domains
and a finite number of outcomes, the Monotonicity Property. In single parameter domains,
like for example in an auction where there is only one item, monotonicity is exactly the
monotonicity we know from calculus and the most practical description of truthfulness we
could hope for. The allocation should be a monotone (for the case of auctions an increasing,

∗Department of Informatics, University of Athens, Email: avidali@di.uoa.gr

1

while for the case of scheduling a decreasing) function of the player’s valuation for the item.
However for the case of two or more items Monotonicity is a local condition that should
be satisfied by any pair of instances of the problem and does not give us any clue about
the global picture of the mechanism, when considering the whole space of inputs together.
We would instead need a global and more intuitive description, hopefully also practical for
proving lower bounds. We replace Monotonicity by a geometrical and global characterization
of truthfulness, for the case when the valuations are additive.

Until now such a characterization was known in the context of the scheduling unrelated
machines problem only for the easy case of two tasks [8] and it turned out to be a a quintessen-
tial element of the characterization proof in [7] and the lower bound in [8]. We believe that
our result here can be used for obtaining new lower bounds. The only discouraging fact is
that even for the case of 3 tasks the different mechanisms are too many and geometrically
complicated.

No matter how many are the players participating in a mechanism, determining whether
a mechanism is truthful boils down to a single-player case. Truthfulness requires that for
fixed values of the other players, a player should not be able to increase his utility by lying.
Studying the mechanism for fixed values of the other players is like studying a single-player
case. Consequently in our setting there is a single player and m different indivisible items (or
tasks). The player’s type is denoted by the vector t = (t1, . . . , tm), where ti is the valuation
of the bidder for the i-th item/task and the allocation is denoted by a = (a1, . . . , am) where
ai ∈ {0, 1}.

We assume that the bidder has additive valuations and hence the bidder’s valuation
function when his type is t and his allocation a is vt(a) = a · t. In fact it is easy to see
that our results also apply if the valuations are of the form vt(a) = λ(a · t) + γa for some
constants λ, γa (we can have one different γa for each different allocation a). The reason for
this is simple namely these valuations also satisfy the Monotonicity Property and moreover
the possible truthful mechanisms for such valuations are like in Figure 1 (this would not be
the case for valuations with vt(11) = t1 ·t2 or vt(11) = 2t1 +t2 as the sloped hyperplane would
not be 45◦). A mechanism consists of an allocation algorithm a and a payment algorithm p.
We make the standard assumption that the utilities are quasilinear, that is the utility of the
player is u(a, t) = vt(a) − p(a).

The allocation part of the mechanism gives a partition of the space R
m of possible values

of a player to 2m different regions, one for each possible different allocation a of the player.
But which are exactly the possible partitions of the space the mechanism creates? This is
exactly the question we address in this paper.

We know [18] that a mechanism is truthful if and only if its allocation part satisfies the
monotonicity property.

Definition 1 (Monotonicity Property). An allocation algorithm is called monotone if it
satisfies the following property: for every two sets of tasks t and t′ the associated allocations
a and a′ satisfy (a − a′) · (t − t′) ≤ 0, where · denotes the dot product of the vectors, that is,
∑m

j=1
(aj − a′j)(tj − t′j) ≤ 0.

Notice that the Monotonicity Property is a necessary and sufficient condition for truth-
fulness and that it only involves the allocation part of the mechanism. Consequently by
determining the possible partitions of the input space created by the allocation part of the
mechanism we will eventually give a characterization of truthfulness.

2

Our problem can be reformulated as an interesting, simple and fun geometrical problem
(forgetting everything about mechanisms and game theory) as follows:

Definition 2 (Geometrical statement of the problem). Suppose you have the m-dimensional
cube [0, 1]m. The vector a, formed by the coordinates of each one of the vertices of the
cube, is the “allocation”(/label) at this point. Consequently there are 2m different possible
“allocations”. We want to give to each one of the points in the interior of the cube one of
the possible “allocations” so that the monotonicity condition (t − t′)(a − a′) ≤ 0 is satisfied
for each pair of different points t, t′ in the cube and their corresponding “allocations” a, a′.
Which are the partitions of R

m that satisfy this property?

As it has already been noticed in [10] in the case of additive valuations the boundaries of
the mechanism are hyperplanes of a very specific form, every region created by this partition is
a convex polyhedron. In this paper we show exactly which (rather few) polytopes are involved
in such a partition. For proving our results we reduce the problem to that of determining the
allocation graph of the mechanism, i.e. which of the regions share a common boundary. We
can then determine the exact geometrical shape of the mechanism because the hyperplane
that separates two regions can be easily derived from the monotonicity property.

Our results apply directly to the scheduling unrelated machines problem giving lower
bounds for two very interesting special cases of the problem.

Definition 3 (The scheduling unrelated machines problem). The input to the scheduling
problem is a nonnegative matrix t of n rows, one for each machine-player, and m columns,
one for each task. The entry tij (of the i-th row and j-th column) is the time it takes for
machine i to execute task j. Let ti denote the times for machine i, which is the vector of
the i-th row. The output is an allocation a = a(t), which partitions the tasks into the n

machines. We describe the partition using indicator values aij ∈ {0, 1}: aij = 1 iff task
j is allocated to machine i. We should allocate each task to exactly one machine, or more
formally

∑n
j=1

aij = 1. The goal is to minimize the makespan, i.e. to minimize the total
processing time of the player that finishes last.

1.1 Our Tools

Besides the potential applications of our characterization, we believe that also the method
we introduce for studying the allocation graph is of particular interest as it provides a very
simple way to handle a very complicated partition of the space.

We propose a new, practical, method for determining all possible allocation graphs and
the geometrical shapes of the mechanism: For each region Ra of the mechanism instead of
considering its complicated geometrical shape we define a box that contains the region. The
signs of distances between parallel to each other boundaries of the mechanism determine
whether two of these boxes intersect. If two boxes intersect then the corresponding regions
share a common boundary. Alternatively if two boxes intersect then there is an edge between
the corresponding edges in the allocation graph. These distances however are not independent
from each other. Applying cycle-monotonicity for appropriately chosen zero-length cycles
allows us to determine how these constants relate. As boundaries between regions that differ
only in one allocation always exist we will concentrate on the subgraph of the allocation
graph that consists of the edges corresponding to Hamming distance-1 boundaries. For m

tasks it is practical to consider this graph as an m-dimensional hypercube.

3

1.2 Related work

Myerson [14] gave a characterization of truthful algorithms for one-parameter problems, in
terms of a monotonicity condition, which was rediscovered by Archer and Tardos [2]. For the
case of multidimensional types Bikchandani et al. [5] prove that a simple necessary monotonic-
ity property of the allocations of different inputs (and without any reference to payments)
is also sufficient for truthful mechanisms, while Gui, Müller, and Vohra [10] extend this to a
greater variety of domains (this work is rather close to ours as it also follows a geometrical
approach). Saks and Yu [18] generalize this result to cover all convex domains of finitely
many outcomes. Monderer [13] showed that this result cannot be essentially extended to a
larger class of domains. Both these results concern domains of finitely many outcomes. There
are however cases, like the fractional version of the scheduling problem, when the set of all
possible allocations is infinite. For these, Archer and Kleinberg [1] provided a necessary and
sufficient condition for truthfulness. Very recently Berger et al. [4] generalize all these results
for the case of convex valuations.

Nisan and Ronen introduced the mechanism-design version of the scheduling problem
on unrelated machines in the paper that founded the algorithmic theory of Mechanism De-
sign [15, 16]. They showed that the well-known VCG mechanism, which is a polynomial-time
algorithm and truthful, has approximation ratio n. They conjectured that there is no de-
terministic mechanism with approximation ratio less than n. They also showed that no
mechanism (polynomial-time or not) can achieve approximation ratio better than 2. This
was improved to 1 +

√
2 [8], and further to 1 + ϕ in [11]. For the case of two machines [9]

Dobzinski and Sundararajan characterized all mechanisms with finite approximation ratio,
while [7] gave a characterization of all (regardless of approximation ratio) decisive truthful
mechanisms in terms of affine minimizers and threshold mechanisms.

In a very recent paper [3] Ashlagi, Dobizinski and Lavi prove a lower bound of n for a
special class of mechanisms, which they call “anonymous”. Lavi and Swamy [12] considered
another special case of the same problem when the processing times have only two possible
values low or high, and devised a deterministic 2-approximation truthful mechanism; the use
of cycle monotonicity played a central role in this work as well.

2 Preliminaries

For any two different assignments a, b for player i we define fa:b := sup{(a − b) · t | t ∈ Ra}.

Definition 4. We denote by Ra the closure of the subset of R
m where the mechanism gives

assignment a and we will call it a region of the mechanism.

We define the Hamming Distance Hd(a, b) between two vectors a, b, as the number of
positions in which the two vectors are different. The Minkowski sum of two sets A,B ⊆ R

m

is A⊕B = {a+ b | a ∈ A, b ∈ B}. Let also Ba := {t | (−1)aj tj ≥ 0, j = 1, . . . ,m}. For m = 2
each Ba is a quadrant of R

2.

Lemma 1. a) If a point b belongs to region Ra of a truthful mechanism, then also b⊕Ba ⊆ Ra.

b) Regions Ra and Ra′ are separated by the hyperplane (a− a′) · t = fa:a′ and each region
is bounded by a convex polytope.

4

t1

t2

R10 R00

R11 R01

t1

t2

R10 R00

R11 R01

t1

t2

R10 R00

R11 R01

c >012

c12

c12

f01:11
f00:01

c <012

c12

c12

f01:11
f00:01

Figure 1: The two possible ways to partition the positive orthant for the case of 2 tasks and
the threshold mechanism as a degenerate case of both.

c) Every region Ra satisfies Ra ⊆ Fa ⊕ Ba where Fa := (fa:a−1,1−a1
, . . . , fa:a−m,1−am). In

other words region Ra is included in the box we get by shifting the box Ba so that it that has
its vertex at the point Fa.

This means that every region Ra is included in a box defined by the boundaries of Ra

with all regions Rb such that Hd(a, b) = 1. The proof is immediate by the monotonicity
property and the definition of fa:b.

2.1 The allocation graph of each player

We define an edge-weighted directed graph G, the allocation graph, whose vertex set are all
possible allocations of the player. For each two allocations a, b the weight of the edge from a

to b is fa:b.
The following property is necessary and sufficient for truthfulness [17].

Definition 5 (Cycle monotonicity). An allocation algorithm satisfies cycle monotonicity if
for every integer K and cycle a1, . . . , aK , aK+1 = a1 on the allocation graph

∑K
k=1

fak:ak+1
≤ 0.

The following Lemma is an essential tool for our proofs. (We omit its proof, which is an
extension of [[18], Proposition 5].)

Lemma 2. Two regions Ra, Ra′ that share at least one common boundary point satisfy p(a)−
p(a′) = fa:a′ = −fa′:a.

Lemma 3. Any cycle on the allocation graph in which each pair of consecutive nodes corre-
sponds to a pair of regions sharing a common boundary point has length zero.

Remark 1. An alternative definition for fa:a′ would be to define it as p(a)− p(a′). The two
definitions coincide when the regions Ra, Ra′ have a common boundary point, and these are
also the pairs of allocations for which we will need this definition.

3 New tools for the case of m items

The mechanism consists of sloped hyperplanes, as well as hyperplanes vertical to some axis,
which we will call Hd-1 boundaries (because they separate regions that have Hamming dis-
tance equal to 1, i.e. differ in only one task). The trouble with the sloped hyperplanes is that

5

they do appear as boundaries in all possible shapes of the mechanism, so we have to take
cases. Luckily the hyperplanes vertical to some axis appear in all possible shapes. We will
use the distance between these hyperplanes in order to describe the allocation graph of the
mechanism. The sign of these distances determines exactly which of the sloped lines appear
in the geometrical picture of the mechanism.

3.1 The example of two tasks demonstrates the idea

The idea of our approach is best depicted if we apply it for the easy case of two tasks (for
which we already know that the two possible mechanisms are depicted in Figure 1). We
observe that the two lines (t1 = f11:01 and t1 = −f00:10) that are vertical to the axis t1 and
the two lines (t2 = f11:10 and t2 = −f01:00) that are vertical to the axis t2 have the same
distance (otherwise the sloped line would not be 45◦).

Another, purely algebraic and more straightforward way, to obtain this fact is to just
to apply once cycle monotonicity. Taking the cycle 00 → 01 → 11 → 10 → 00 we get
f00:10 + f10:11 + f11:01 + f01:00 = 0 or equivalently f11:01 + f00:10 = f11:10 + f00:01. If we define
c12 := f11:01 + f00:10 (This is the distance between the two lines vertical to the axis t1.) then
by the previous cycle it turns out that the distance between the two lines vertical to the axis
t2, which can be expressed as f11:01 + f00:10 is also equal to c12. Notice that we did not take
two cases and did no drawing.

We are now ready to describe the allocation graph of the mechanism: Region R11 is
contained in the box t1 ≤ f11:01, t2 ≤ f11:10. Region R00 is contained in the box t1 ≥
f10:00, t2 ≥ f01:00. Regions R11 and R00 share a common boundary line if and only if the
boxes that contain them intersect i.e. if and only if c12 > 0. (Similarly regions R01 and R10

share a common boundary line if and only if the boxes that contain them intersect i.e. if and
only if c12 < 0.) That is the sign of c12 determines which of the two possible shapes has the
mechanism.

Knowing the allocation graph we can then very easily draw the picture of the mechanism.
In what follows we generalize this idea to describe the allocation graph and the geometry of
a truthful mechanism.

3.2 Expressing the distances between regions

We proceed to define some constants that generalize this idea we demonstrated for the case of
two tasks. The constant cij|a−{i,j}

measures the distance between the separating hyperplanes
of the mechanism ti = f11a−{i,j}:01a−{i,j}

and ti = f10a−{i,j}:00a−{i,j}
, which are two parallel

hyperplanes corresponding to Hamming distance 1 boundaries. This constant fully describes
the geometry of the mechanism if the allocation of all tasks, except for tasks i, j, is fixed to
a−{i,j}. To provide some intuition why we choose these consider that in a decisive mechanism
this would give an asymptotic picture of the mechanism: If the values of only two tasks
i, j are allowed to be variables, while the remaining tasks with allocation 1 are fixed to the
biggest possible value (+∞) and the tasks with allocation 0 are fixed to the smallest possible
value, this constant describes the geometry of the mechanism that allocates tasks i, j.

6

Definition 6. For all i, j and all possible m − 2-tuples (/allocations) a−{i,j} we define

cij|a−{i,j}
:= f11a−{i,j}:01a−{i,j}

+ f00a−{i,j}:10a−{i,j}

= f11a−{i,j}:10a−{i,j}
+ f00a−{i,j}:01a−{i,j}

(1)

But are these constants independent from each other? As the following Lemma shows,
the answer is no and the relation between these constants is derived from Cycle Monotonicity.

Lemma 4. If a mechanism is truthful then the constants cij|a−{i,j}
satisfy the following equa-

tion:
cij|1a−{i,j,k}

− cij|0a−{i,j,k}
= cik|1a−{i,j,k}

− cik|0a−{i,j,k}
(2)

Proof. (Sketch) We get this from the following cycle (also depicted in Figure 3) f111:011 +
f011:010 + f010:000 + f000:001 + f001:101 + f101:100 + f100:110 + f110:111 = 0.

By Lemma 1 each region Ra of the mechanism is contained in a box formed by the
separating hyperplanes between Ra and all regions with assignment in Hamming distance 1
from a. If we concentrate on a pair of intersecting regions, then the boxes that contain them
have a non-empty intersection. But it is also the other way round (we include the proof of
the next Lemma in the Appendix):

Lemma 5. If the boxes corresponding to two regions intersect then the regions share a com-
mon boundary hyperplane.

We proceed to define di
a:b as the difference of the Hd-1 boundaries on axis i corresponding

to two distinct regions Ra, Rb. We have di
a:1−a > 0 for all i = 1, . . . ,m if and only if regions

Ra and R1−a intersect.
Even though the geometry of the mechanism is complicated it turns out that we can

derive a general formula for the di
a:bs using now a more complicated zero-length cycle on the

allocation graph.

Definition 7. We define the distance di
a:b := fa:1−ai,a−i

+ fb:1−bi,b−i
.

Lemma 6. We have di
a:b = di

b:a (symmetry) and di
a:b = −di

1−ai,a−i:1−bi,b−i
.

Lemma 7. The distance di
a:1−a can be expressed as the following sum of constants:

di
a:1−a :=

∑

j 6=i,j∈{1,...,m}

(−1)ai+ajcij|b−{i,j}
,

where the k-th coordinate of the allocation bk is bk =

{

1 − ak if k < j

ak if k > j.

For example we have

d1
a:1−a := (−1)a1+a2c12|a−{1,2}

+ (−1)a1+a3c13|1−a2a−{1,2,3}
+

(−1)a1+a4c14|1−a21−a3a−{1,2,3,4}
+ . . . + (−1)a1+amc1m|1−a21−a3...1−am−1

.

Note that d1
11:00 = c1,2 = c so Definition 7 is just an extension of Definition 6.

7

Proof. For simplicity we will give the details of the proof for i = 1 and m tasks, that is if we
want to compute d1. We take the path that at each step changes the allocation of a single
task in the following order: (1, 2, 3 . . . ,m, 1,m,m − 1, . . . , 2). The path is

fa1a2...am:1−a1a2...am + f1−a1a2a3...am:1−a11−a2a3...am + . . .

+ f1−a1...1−am−1am:1−a1...1−am

+ f1−a11−a2...1−am:a11−a2...1−am + fa11−a2...1−am−11−am:a11−a2...1−am−1am + . . .

+ fa11−a2a3...am:a1a2a3...am = 0.

We then put together two pairs of allocations if the allocations in both pairs differ on the
same position (for example the pairs 111 : 011 and 001 : 101 differ both on the first task so
f111:011 and f001:101 would make a pair) and applying the rule fa:b = −fb:a for a, b that differ
only in one position, we get

d1
a:1−a = f1−a11−a2a3...am:1−a1a2a3...am + fa1a2a3...am:a11−a2a3...am + . . .

+ f1−a1...1−am:1−a1...1−am−1am + fa11−a2...1−am−1am:a11−a2...1−am−11−am

= (−1)a1+a2c1,2|a−{1,2}
+ (−1)a1+a3c1,3|1−a2a−{1,2,3}

+ . . . + (−1)a1+amc1,m|1−a−{1,m}
.

The technique for computing di
a:1−a is analogous. We use the following cycle: We first change

the allocation of task i, we then change in m− 1 steps the allocation of the remaining m− 1
tasks in ascending order (that is the sequence of indices of the tasks we change is increasing)
until we have changed the allocation of all tasks. After this it it time to change the allocation
of task i for the second time. The last step is to reverse the sequence of the m− 1 remaining
indices and change the allocation of the corresponding tasks successively according to the
reversed sequence.

4 Characterization of 3-Dimensional mechanisms

4.1 Calculating the distances

We believe that the tools we have developed in the preceding section are useful for the study
of the allocation graph for an arbitrary number of tasks m. We demonstrate this by using
them in order to determine the allocation graphs and the corresponding geometrical shapes
a truthful mechanism can take for the case m = 3.

For the case of 3 tasks we will apply Lemmas 7 and 6 in order to compute the distances
di

a:1−a with respect to the constants ci,j|a−{i,j}
. For simplicity of notation we will write dj

instead of d
j
111:000

, for j = 1, 2, 3 and it turns out that all other distances d
j
a:b, between regions

Ra and Rb, can be expressed using the three distances d1, d2, d3 between regions R111 and
R000. We define the constant e as

e = c12|0 − c12|1 = c13|0 − c13|1 = c23|0 − c23|1. (3)

8

then c12|0 = c12|1 + e and we can rewrite the equalities in the following way:

d1
111:000 = c13|1 + c12|0 = c13|1 + c12|1 + e = c13|0 + c12|0 − e = d1

d2
111:000 = c12|1 + c23|0 = c12|1 + c23|1 + e = c12|0 + c23|0 − e = d2

d3
111:000 = c13|1 + c23|0 = c13|1 + c23|1 + e = c13|0 + c23|0 − e = d3

d1
011:100 = −d1

d2
011:100 = −c12|1 + c23|1 = d3 − d1

d3
011:100 = −c13|1 + c23|1 = d2 − d1

d1
101:010 = −c12|1 + c13|1 = d3 − d2

d2
101:010 = −d2

d3
101:010 = = −(d2 − d1)

d1
110:001 = −(d3 − d2)

d2
110:001 = −(d3 − d1)

d3
110:001 = −d3

4.2 Properties satisfied by the allocation graph

Lemma 8. There always exist two regions Ra, Rb in Hd = 3 such that di
a:b ≥ 0 for i = 1, 2, 3.

Proof. Suppose towards a contradiction that the statement of the lemma is not true. Then
R111, R000 do not share a common boundary. There are three cases: either d1, d2, d3 are all
negative, or two of them are negative or one of them is negative. Suppose that d1 ≤ d2 ≤ d3

(the proof for any other relative ranking of the three distances is similar we would just find a
different pair of intersecting boxes). Then the three cases are: d1 ≤ d2 ≤ d3 < 0 or d1 ≤ d2 <

0 ≤ d3 or d1 < 0 ≤ d2 ≤ d3. In any of the cases we have d1
011:100 ≥ 0, d2

011:100 ≥ 0, d3
011:100 ≥ 0

and consequently regions R011, R100 intersect.

Remark 2. In what follows we will make the assumption that this pair of regions Ra, Rb in
Hd = 3 such that di

a:b ≥ 0 for i = 1, 2, 3, guaranteed to exist by Lemma 8 are R111 and R000.
For any mechanism we present here you can get another truthful mechanism by applying

the following rotations: Think of the mechanism as a partition of the cube, if you rotate one
of the possible partitions so that the faces of the cube go to faces of the cube after the rotation
(and the center of axes goes to another vertex of the cube), you also get a truthful mechanism.
The reason is that the slope of the separating hyperplane between two regions only depends on
their Hamming Distance, i.e. on the number of tasks on which they differ. The characteristic
of the rotation we described is that it respects the Hamming distances.

Lemma 9. If R111 and R000 intersect then

a) if e < 0 then at least two of the constants c12|1, c13|1, c23|1 are strictly positive,

b) if e > 0 then at least two of the constants c12|0, c13|0, c23|0 are strictly positive.

9

Proof. We will deal with the case e < 0 (the other case is very similar). Observe the second
expression for di. Since R111 and R000 share a common boundary we should have di > 0
for i = 1, 2, 3. Each one of the constants c12|1, c13|1, c23|1 appears exactly in two of the three
distances and e < 0. Suppose towards a contradiction that two of the constants were negative,
then at least one of the distances di would be negative, contradiction.

Lemma 10. If a pair of regions Ra, R1−a share a common Hd-3 boundary then no other pair
Rb, R1−b of regions share a common Hd-3 boundary.

Proof. Suppose for example that R111, R000 share a common Hd-3 boundary then this bound-
ary is a hyperplane of the form t11 +t12+t13 =constant. Consequently the boxes that contain
the regions intersect and more specifically all three distances d1, d2, d3 are positive. But as by
Lemma 6 d1

011:100 = −d1, we have d1
011:100 < 0 and consequently R011, R100 do not intersect on

axis t1 and thus cannot share a common Hd-3 boundary. Similarly as d2
101:010 = −d2 regions

R101, R010 do not intersect on axis t2 and thus cannot share a common Hd-3 boundary and
so on.

Lemma 11. If R111 and R000 share a common boundary and c12|1 > 0, c13|1 < 0, c23|1 >

0, e < 0 then we also have c12|0 > 0, c13|0 < 0, c23|0 > 0.

The proof is very easy and we include it in appendix A.

4.3 All possible Mechanisms

Definition 8. A degenerate version of a mechanism M is a mechanism for which some of
the constants cij|0, cij|1, d

k
a:b, for some i, j, k ∈ {1, 2, 3} and some allocations a, b, become 0,

while all other such constants retain the same sign as in the non-degenerate mechanism.

We will describe the possible shapes of the mechanism when a Hd-3 boundary exists and
thanks to Lemma 8 any other mechanism is a degenerate version of a mechanism with a Hd-3
boundary. Summarizing all restrictions to the shape of the mechanism we obtained in the
previous section we get the following characterization:

Theorem 1. The possible truthful mechanisms are the following five possible partitions of
the space and all their rotations. (In Figure 2 you can see their geometrical shapes.)

As for any mechanism we give here we also include in our characterization all its rotations,
we suppose without loss of generality that R111, R000 share a common boundary, that e < 0
and that the two constants guaranteed to be positive by Lemma 9 are c12|1 > 0, c23|1 > 0.

1. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 > 0, c23|0 > 0

2. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 < 0

3. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 > 0

4. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0

5. c12|1 > 0, c13|1 < 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0.

10

Figure 2: 3D models of the possible partitions (up to rotation). Looking just at the blue
projections you can determine the constants cij|0 and from the red projections the constants
cij|1.

4.4 Knowing a few distances we can draw the whole mechanism

Now we can fully describe the boxes that contain different regions of the mechanism. Let
for simplicity in notation f1 := f111:011, f2 := f111:101, f3 := f111:110. In fact given four of the
constants cij|a as input it is easy to find the exact shape of the mechanism thanks to the
following relations

F111 := (f111:011, f111:101, f111:110) = (f1, f2, f3)

F000 := (f1 − d1, f2 − d2, f3 − d3)

F011 := (f1, f2 − c12|1, f3 − c13|1)

F101 := (f1 − c12|1, f2, f3 − c23|1)

F110 := (f1 − c13|1, f2 − c23|1, f3)

F100 := (f1 − d1, f2 − c23|1, f3 − c23|1)

F010 := (f1 − c13|1, f2 − d2, f3 − c13|1)

F001 := (f1 − c12|1, f2 − c12|1, f3 − d3).

Having found a general formula for each one of these boxes we can also describe an algorithm
for constructing the geometrical shape of the mechanism. The input is four of the constants
cij|a (knowing these we can compute the other two constants) and the output is the exact
shape of the mechanism. We first construct all boxes. Wherever two or more boxes inter-
sect we have to divide the points in the intersection between the regions corresponding to
the intersecting boxes. At this point we have to be cautious, because if we are given two
intersecting boxes in Hd = 3 then there are infinitely many possible separating hyperplanes
between them. However if we first consider the intersection between Hd = 2 boxes there is
a single hyperplane that can separate the two regions. Then consider the intersecting boxes
with allocations in Hd = 3 (there is at most one such pair as we will see in lemma 10). As we
have already constructed the Hd ≤ 2 boundaries there is a single possible Hd-3 separating
hyperplane. It is not hard to implement this algorithm and given four of the constants cij|a

11

of the mechanisms we can fully determine the allocation graph and the geometrical shape of
the mechanism. We next proceed to explore which are the possible geometrical shapes of the
mechanism, which depend on the signs of the distances.

5 Lower bounds for some Scheduling Mechanisms

Observing the figures we got from our characterization we see that many of the regions have
the shape of a box, for some of these cases the region that has the shape of the box is R1...1.
Threshold (/additive) mechanisms [7, 15] are the special case of these mechanisms, when all
regions are boxes. Even though these mechanisms are much more general, we can still show
the same lower bound of 1 +

√
n using an argument very simmilar to the one used in [7]. For

these cases we can prove a lower bound of 1+
√

n (while the lower bound for the general case
is still a small constant). (We include the proof in the appendix.)

Theorem 2. Every mechanism for which R1...1 is a box has approximation ratio at least
1 +

√
n.

Finally there is a non-trivial geometrically defined class of mechanisms for which we can
provide an n lower bound.

Definition 9. We will say that a mechanism is non-penalizing if in the allocation graph no
pair of regions of the form Ra10, Rb01, where a, b are (m − 2)-dimensional allocation vectors,
share a common boundary.

The first mechanism in Figure 2 is an example of such a mechanism. The intuition behind
these mechanisms is that, if for fixed values of the other players, a player lowers one of his
values he only gets more tasks (regardless of his initial allocation for the tasks he lowers), in
other words a machine never loses a job, just because it becomes faster for another job.

Theorem 3. Every non-penalizing mechanism has approximation ratio at least n.

6 Concluding Remarks and open problems

Our characterization is only for the case of 3 tasks, the tools we have developed to obtain
this characterization are however for the general case of m tasks. Can we find a succinct way
to describe all possible allocation graphs for the general case?

We would like to stress the connection of our results with the scheduling unrelated ma-
chines problem. The lower bounds in the last section show that many mechanisms have
bad approximation ratio just because of the geometrical shape of their projections. Finally
we believe that the characterization for the case of three tasks can be used to improve the
existing [11] lower bound of 2.465 for the case of 4 machines to a better constant.

Acknowledgements

I would like to thank Christos Athanasiadis, Ioannis Emiris and Elias Koutsoupias for helpful
discussions and my brother Aris Vidalis for making the nice shaded 3D models I include in
this paper (and also for bothering to imagine these complicated partitions of the space!).

12

References

[1] Aaron Archer and Robert Kleinberg. Truthful germs are contagious: A local to global
characterization of truthfulness. In ACM Conference on Electronic Commerce (EC),
2008.

[2] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In 42nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 482–491, 2001.

[3] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. An optimal lower bound for anonymous
scheduling mechanisms. In ACM Conference on Electronic Commerce (EC), 2009.

[4] André Berger, Rudolf Müller, and Seyed Hossein Naeemi. Characterizing incentive com-
patibility for convex valuations. In to appear in SAGT, 2009.

[5] Sushil Bikhchandani, Shurojit Chatterji, Ron Lavi, Ahuva Mu’alem, Noam Nisan, and
Arunava Sen. Weak monotonicity characterizes deterministic dominant-strategy imple-
mentation. Econometrica, 74(4):1109–1132, 2006.

[6] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound for
scheduling mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1163–1169, 2007.

[7] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A characterization of
2-player mechanisms for scheduling. In Algorithms - ESA, 16th Annual European Sym-
posium, pages 297–307, 2008.

[8] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound for
scheduling mechanisms. Algorithmica, 2008.

[9] Shahar Dobzinski and Mukund Sundararajan. On characterizations of truthful mecha-
nisms for combinatorial auctions and scheduling. In EC, 2008.

[10] Hongwei Gui, Rudolf Müller, and Rakesh V. Vohra. Dominant strategy mechanisms
with multidimensional types. In Computing and Markets, 2005.

[11] Elias Koutsoupias and Angelina Vidali. A lower bound of 1+φ for truthful scheduling
mechanisms. In MFCS, pages 454–464, 2007.

[12] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional
scheduling via cycle monotonicity. In ACM Conference on Electronic Commerce (EC),
pages 252–261, 2007.

[13] Dov Monderer. Monotonicity and implementability. In ACM Conference on Electronic
Commerce (EC), 2008.

[14] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research,
6(1):58–73, 1981.

[15] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing
(STOC), pages 129–140, 1999.

13

[16] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35:166–196, 2001.

[17] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-
linear context. Journal of Mathematical Economics, 16:191–200, 1987.

[18] Michael E. Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex
domains. In EC, pages 286–293, 2005.

A Missing proofs

Proof of Lemma 11. Since R111 and R000 share a common boundary d1 = c13|1 + c12|0 > 0
consequently c12|0 > −c13|1 > 0. As e = c13|0 − c13|1 < 0 we have c13|0 < c13|1 < 0. Finally
d2 = c13|1 + c23|0 > 0 and consequently c23|0 > −c13|1 > 0.

Proof of Lemma 7. For simplicity we will give the details of the proof for i = 1 and m tasks,
that is if we want to compute d1. We take the path that at each step changes the allocation
of a single task in the following order: (1, 2, 3 . . . ,m, 1,m,m − 1, . . . , 2). The path is

fa1a2...am:1−a1a2...am + f1−a1a2a3...am:1−a11−a2a3...am + . . .

+ f1−a1...1−am−1am:1−a1...1−am

+ f1−a11−a2...1−am:a11−a2...1−am + fa11−a2...1−am−11−am:a11−a2...1−am−1am + . . .

+ fa11−a2a3...am:a1a2a3...am = 0.

We then put together two pairs of allocations if the allocations in both pairs differ on the
same position (for example the pairs 111 : 011 and 001 : 101 differ both on the first task so
f111:011 and f001:101 would make a pair) and applying the rule fa:b = −fb:a for a, b that differ
only in one position, we get

d1
a:1−a = f1−a11−a2a3...am:1−a1a2a3...am + fa1a2a3...am:a11−a2a3...am + . . .

+ f1−a1...1−am:1−a1...1−am−1am + fa11−a2...1−am−1am:a11−a2...1−am−11−am

= (−1)a1+a2c1,2|a−{1,2}
+ (−1)a1+a3c1,3|1−a2a−{1,2,3}

+ . . . + (−1)a1+amc1,m|1−a−{1,m}
.

The technique for computing di
a:1−a is analogous. We use the following cycle: We first change

the allocation of task i, we then change in m− 1 steps the allocation of the remaining m− 1
tasks in ascending order (that is the sequence of indices of the tasks we change is increasing)
until we have changed the allocation of all tasks. After this it it time to change the allocation
of task i for the second time. The last step is to reverse the sequence of the m− 1 remaining
indices and change the allocation of the corresponding tasks successively according to the
reversed sequence.

Proof of Lemma 6. Directly from the definition we have di
a:b = f1−ai,a−i:a + f1−bi,b−i:b and

di
1−ai,a−i:1−bi,b−i

= fa:1−ai,a−i
+ fb:1−bi,b−i

. Consequently di
a:b = −di

1−ai,a−i:1−bi,b−i
.

Proof of Lemma 5. Consider the projections of the mechanism for two tasks i, j when the
processing times for the rest of the tasks are fixed. Then all other terms of the monotonicity

14

property vanish except for the terms corresponding to tasks i, j. Consequently for fixed values
of the other players the mechanism should have one of the two shapes in Figure 1.

Suppose that the boxes Ba, Bb corresponding to regions Ra, Rb intersect. Say that a, b

differ in the allocation of tasks i, j (possibly also in the allocation of other tasks). Then
taking the projection for fixed t−{i,j} it is obvious that the two regions share a common
boundary.

Proof of Theorem 2. We will just show that it has ratio at least
√

n. By adding some addi-
tional dummy tasks (like in the proof of the 1 +

√
2 lower bound [6]) it is an easy exercise to

improve this to a lower bound of 1 +
√

n.
Consider the following two n × n matrices of processing times











b ⋆ . . . b ⋆

1 . . . 1
...

. . .
...

1 . . . 1





















ǫ ⋆ . . . b + ǫ . . . ǫ ⋆

1 . . . 1 ⋆ . . . 1
... . . . 1

. . .
...

1 . . . 1 . . . 1











.

There exists some b such that the first player gets all tasks, so that the allocation in the first
instance is the one indicated by the stars. If there exists some b ≥ 1 then the mechanism has
approximation n and we are done. Suppose that 0 < b < 1 and choose b to be the supremum
of all these values, the approximation ratio is n · b.

There exists a task j such that f1...1:a = b where a differs from (1, . . . , 1) only in position
j. Now consider the second matrix of processing times, since f1...1:a = b and since R1...1 has
the shape of a box, the allocation is the one indicated by the stars and the approximation

ratio is
1

b
. The solution of the equation n · b =

1

b
is

√
n.

Proof. For a better understanding we will give the proof of a lower bound of 3 for the case
of 3 tasks. Exactly the same technique gives a lower bound of n for n2 − n + 1 tasks and n

players as this number of tasks guarantees that one of the players will get at least n tasks.
We start with the instance





1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1





where we can assume w.l.o.g. that player 1 gets at least 3 tasks. The idea is to lower all
values of player 1 to some small ǫ > 0 except for 3 (and in the general case n) values. If
we set a task that gets allocated to player 1 to ǫ, then by the Monotonicity Property the
allocation of player 1 remains the same. We then lower one by one all of the tasks that are
not assigned to player 1. Player 1 doesn’t loose any of the tasks initially assigned to him (he
might however get more tasks than those initially assigned to him), because the mechanism
is non-penalizing mechanism. We continue until all tasks of player 1 except for the 3 that
were initially assigned to him are zero. The approximation ratio is 3.

Example 1. For example if the original assignment is the one marked by the stars we get:




1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 1 ⋆

1 1 1 1 ⋆ 1 1 1
1 1 1 1 1 ⋆ 1 ⋆ 1



 →





1 ⋆ 1 ⋆ 1 ⋆ 0 0 0 0 ⋆

1 1 1 1 1 1 1
1 1 1 1 1 1 1



 .

15

111

000

101 001

011

010110

100

-

+

+

+ -

-

-

+

111

000

101 001

011

010110

100

-

+

+

+ -

-

-

+

Figure 3: The first path gives the equations: c1,2|1 − c1,2|0 = c1,3|1 − c1,3|0 and c1,2|1 − c1,2|0 =
c2,3|1 − c2,3|0. The second path gives the expression for d1

111:000.

The tasked whose allocation we do not indicate can be allocated to anyone of the players, but
the approximation ratio we get is at least n for any of these allocations.

Exactly the same technique gives a lower bound of n for n2 − n + 1 tasks and n players
as this number of tasks guarantees that one of the players will get at least n tasks.

B Some more figures

We have already presented all possible mechanisms, but in this section we will present some
of their degenerate versions just in order to make more plausible the notion degeneracy.

Remark 3. Actually in the degenerate cases the allocation graph has some additional edges,
which are not depicted in Figure 5, edges between regions that do not share a full-dimensional
boundary. It is very easy to figure out from the geometrical shapes which are these edges but
we do not depict them in order to keep the figure easier to understand and more relevant to
the geometrical shape.

16

Figure 4: Possible (up to rotation) mechanisms with a Hd-3 boundary and all constants
cij|0, cij|1, d

k
a:b 6= 0 and the corresponding allocation graph.

17

Figure 5: Some degenerate mechanisms and their corresponding allocation graph. The Hd-1
boundaries are the edges of the cube. (The edges on the allocation graph corresponding to
Hd-2 boundaries are red and the ones corresponding to Hd-3 boundaries blue.)

18

	Introduction
	Our Tools
	Related work

	Preliminaries
	The allocation graph of each player

	New tools for the case of m items
	The example of two tasks demonstrates the idea
	Expressing the distances between regions

	Characterization of 3-Dimensional mechanisms
	Calculating the distances
	Properties satisfied by the allocation graph
	All possible Mechanisms
	Knowing a few distances we can draw the whole mechanism

	Lower bounds for some Scheduling Mechanisms
	Concluding Remarks and open problems
	Missing proofs
	Some more figures

