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EYXAPIYXTIEY

Oa fbeha va evyaplothiow Tov xadnynth vou, k. I'dvyn MooyoBdxy
yio 6oo avextinta éuada yvia ta panuatixd Soviebovtag yall Tou, yio o
adtEE0da xaL To POTELVE anuelo Tou elyay oL doxiuacies oTic onoleg Ue Tpoé-
TeedE xoL TOPA TLOL LA TNHY ETLLOVY] TOU GTNY TEAELOTOINOT) TWV SLATUTOCEWY,
oG Ve am’ GAa ylo To TopdSeLyud Tou étay npooeyyllel UE UTOUOVY Xat
duvautous véo tpoBafuata.

Axéun v xabnyftpia x. Joan Rand Moschovakis yio pio evak-
ooty anddelln (ue emaywy”) mou mpdtetve yio to Afuua 3C.3 xar toug
xafnyntéc x. Avidvy Mehd xou x. Evdyyeho Pdntn mov popdotnxay
uoll pyou yeptxd omd 1o TpofBifuata Tou cuvdvinoa oty Oswela Aptbudy
xo medTeELvaY Mool YL autd.

Axbpa vidbe tuyepr Tou oitnoa 6to Yoo tepBdihov tou p ] AV, 1o
onolo devhivel «cAoyxd» xor ddoya o xabnyntic x. Kdotag Anunteo-
x6ToLAOG.

KXelvovtag ogelhw va avagépw TNy euyvepooivr wou oto Tdpupa dvdor,
YLoL TNV TUWT) TOU 1oL eNe@UANAEE, Vo UTOOTNRIEEL OLXOVOULXE TNV TEPdTWOT)
TOV UETATTUYLAXGY UOU 0TIOUBGY Xl GTOUS YOVELG [(AOU YLOL TNY TPOTEPILS-
TNTA oL €Y0LY JGBOEL GTNY UOPPWOT).
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EIXATQI'H KAI ITEPIAHYH

H Oewpla tolurhoxdtntog napadootond evolapepeTtal TEpLoGoTERPO Yia dvw
pedryUoTe aTNY TOAUTAOXGTNTO EVOS ahyopiBuou ol WAd Alydtepo yia Ty
avéhuor e Péons morvmhoxStnTas. Yrdpyouv BéBata ahydptbuot pe ue-
ydho dve @pdyuata, oAkd ToAd mo yeriyopor otny medln and dAhoug Ue
uxpdtepa. ‘Etot elvan moh0 evBLagépov va €xoule TNy LECT], TOAUTAOXSTTA
evog ahyoplluou 1) axdua XaAOTERO XoL TNV ACUUTTWTIXY XUTUYOUY) TN Xt
VO UTOPOUUE VO TNV OUYXPLVOUUE UE TNV TOALTAOXSTNTA TOU «(ELPGTEPOU
TopaSElYUATOY.

O AhyépiBuog mou Bo avahGooLUE YRAPTNXE Yo TEMTY Qopd oTo aTotyela
tou Euxdeldn. Bploxel 10 uéyloto xowvo Stonpétn 30o apliudy ue povadind
gpyalelo v agalpeon, wa and T d00 MO ATAOVOTEREC Xou EUXOAES OTY)
vhomoinorn and évav unoloyiot tpdéets. Av emitpédouue ulo axdun tedén,
T Stodpeon THTE TOAG apatpeTixd Bridota uropoly va avixataotafoly ond
utor Sralpeor.

O Khintchin ypnowuonoloboe ta ouveyy| x¥Adouata Yo va avTAHCEL amo-
teréoparta yio ) Oewpla uétpou. O Heilbronn evdiagpépbnxe yio wa aptbuo-
Oewpnti epdtnomn tou 6nwe Yedyet oto [4] Tou ébeoe o J. Gillis: «ITowd elvon
T0 UECOC UAXOG UG OXOYEVELUS GUVEYDY XAACUdTWV». Méoa otny amd-
det&n auth Tou Heibronn Beébnxe n avdiuon tne uéong tolurhoxdtntog Tou
Euvxhedelov AhyopiBuou xat 1 tdéa yior to 1o Bo petpnbel o uécog aptbude
Brudtov tou Agapetixod Ewadedelov Ahyopifuou [6]. H Vallé [12][2004]
yenotponotel eviehde dagopetixés uebodoue (Tauberian analysis) xou Bpl-
oxeL Wt eviadar YEGoBo Yo TV AOUUTTWTLXY avEAUGT) TOAGY ahyoplBuny
Tou TEpLypdpovTal Ghot he avdivor o eldxol xdfe gopd eidoug cuveyn
xhdoyorto. Do pio oxdua ©opd oto wabnuotind, Eexaouéva anoteréouoto
anoxToly véu alo utd To Tplopa VEwY BEwptdv oL 1) opLaxt Teploy i MeTagd
dV0o xAdBwv dlvel autd mou o xabévac Eeywplotd aduvatoly Vo SOCOUY, EVE
wia uéBodog mou E8woe TOAAG oNUAVTLXG anoTEAEGUATA, ELVOL OXOTLUO Vi
avuxataotofel and uio véa.

H epyooia auth Zexwvd ye ylo elooywyh) oto ouveyr xAdouato. 3
ouvéyeta viveton Ulo oOvVTOoUY EMLOXOTNOT 0TS €vvoleg Tng Oewplag AptBudy
7o Oa yperaotodue v to Kegdhato 3. Téhoc oto Kepdharo 3 yivetar pia



2 0. EisArora kKAl IIEPIAHWH

avo AU Tapoustaot Tou dpbpou [6], tou Eedlahlvel ToANG onuela Tou TNV
apyLxt dnuoacteuor Ytav Soouéva ToR) TEPLANTTLXG.

A. M stoaywyy 6Ta cUVEYH XAAOUATA

A.l. Henepaocuéva ouveyr] xhdopata. 'Eva nenspacuévo cuveyés
whdoua elvor wia Exppaon Tng Lop@hic

1
To + 1 ’
T+
T2+ . 1

e

N
UE UETOBANTES T1, T2, ... , . 'Eva cuveyéc whdoua unopel va Hewpnbel oav
otolyelo ToU OUUTOS TV pNTHY ouvapThoewY R(Z1,... ,Ty,...) 6T0L R

elvat évorg SaxTUAOg UE LOVEDAL.
I yeyarGtepr euxolia Bo yenoluonoticoupe to cupBoloud

1
/$07$17"'7mN/:I0+ 1
T+ ——————
T2+ . 1
e —
TN
Ou yetaintéc zo,21,. .. , T, UTOpoLY yeuxd va mdpouv tpéc oto R,C,Z

1y oto N. Qoté00 eueic Tig neptocbtepeg @opés Ba toug Slvouue Tuég Tou
avixouv oto N ¥ 610 Z.

OrizMox A.1. Ta ouveyr xhdouoTa UTOPOUY Vo VoL 0pLoTOUY avadpoulxd
ug e€hc:

/ZUO/ = o,
1

Z0ye-w s Tpt1/ =T+ —.
/ ’ ’ n+/ /xl,...,an/

Kot’ autéy tov tpbro:

1 zor; +1
Jxo, 21/ =30 + — = itk HL N
I T

1 _ ToT1T2 + T2 + To
1 o1 '

r1+ —
T2

/o, z1, 22/ = x0 +

Orizmox A.2. Kouholue to 2o, 1, , Tpn pEPWE mnhixo ¥y amhd nnhixa
TOU oUVEYOUSC HAAOUATOC.
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OprizMox A3 (1A.3). T m < N xalolue 10
(1) Tm:/ﬂfm,l'm_i,_l,"',ﬂf]\f/
10 m-0616 TApeg TMAixo Tou cuveyols xhdouatog /T, L1, , TN/

OpizMmox A.4. Optlovue avadpouixd ta toAVGVULS Qp (X1, T2, ... ,Zp)
oe n YetofAntée, yia n > 0 we e&hc:

(2)

1 avn =20
Qnlz1,22,... ,2n) = § 71 avn =1
21Qn-1(z2,... ,2n) + Qn_2(x3,... ,2,) avn>1

OearHMA A.5 (L. Euler,1A.5). To rnodvdvupo Qn(x1,22,... ,2,) clva
T0 dfpoloua CAwy TwY dpwy moU umopoly va xatacxevaotoly Eexivdvrag
ané 10 Yivouevo:

1.ml.x2...xn
xar mapaieinovrac 0 1§ nepioodrepa un emxaivntdueve {euydpta Stadoyt-
HOV UETABANTEY X5 - Tj41.
Kot’ autédv tov tpémo nalpvouue:
Q1(z1) = 21
Q2(x1,72) = ;122 + 1
Q3(ZL’1, 2, .’173) = x1x223 + 1 + T3
Qu(x1,22,23,24) = T1T2%3%4 + T124 + 324 + T 122 + 1.

OprizMox A.6. Opiloupe v axorovbia (Fp,)nen twv aptbudy Fibonacci

we e€hc:
Fob=0, F1=1
Fn+2 :Fn+1+Fn: Yoo no2> 0.

OEePHMA A.7. To nAfjfloc twv dpowy mou afpoilovrtar oto moAvdvuuo
Qn(z1,22,... ,2,) toodtar ue tov apibud Fibonacci Fp4q.

To Q-rohudvuua eugaviCouy v e&fg oupueTtpio:

Qn+1(m07x13 s 7xn> = Qn+1($n, ce ,Z’l,.’Eo).
Auté amotehel dueon ouvérelo tou Bewphuatoc A5: 1 cuyxeXpLéVn UETE-
Beomn Twv ueTaBAnTodY Tou Q-tokuwvduou dev ennpedlet Ta Lebyn Stodoyindy
Spwv Ve emmAgoy elvan xat 1) yovodudh uetdleon ye auth v Widthta. Xu-
VETOS YLoL 1 > 2,
Qn(z1,22,. .., Tn) = 20 Qn-1(21,... ,Tn1) + Qn_2(T1,... ,Tn_2).

H Baowd dudtnta v onola 0o YeNOLULOTOLOOUUE ETAVELANUUEVR 0T OU-
vEYELa elva:
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OEQPHMA A.8 (1A.8).

Qn+1(m07x17"' ,Z’n>
L0y Tlyenn I/ =
[70: 1, 2/ Qun(z1,22,... ,2,)

, (n<N).

A.2. Ané ta Q-roludvupa ota ouveyr xhdopata. (lotéoo TiC Te-
PLOCOTEREC PORPES SEV MAC EVOLUPEREL 1) MEAETY] EVOG OLVEYOUC WS THpdoTa-
OGS UE UETUBANTES Z1, . - . , Ty, WANG WG aVOTApdoTOOT EVOC TpaypaTieod (1
uryadixol) aptfuod. Téte Bu ouugwyhoouue va cLUBOMIOUUE Ta UEPLXE
TAxa g ai, ... ,ay GOTE vo golvetal 6Tt mpdxetTan Yo optBuols xon Syt
yia uetafintéc. Entone opllovue tic axohoudiec py, g, we e€ic:

OprizMox A9 (1C.1). To %dBe axohovblo axepaiwy ag, ai,. .. ,an xoL
yia x80e n ye 0 < n < N Oétovue:

Dn = Qn-l-l(aoa A1y, 7an)
dn = Q’n(ala agz,... 7an)'

Pn , C o , , s

Ta “— xohovvtar n-0otol xUpLor cuyxAiivovtes aptBuol (principal con-
an

vergents), # amhd cuyxAivovtec Tou cuveyolc xhdopatoc fao, ... ,an/.

Eivar BoAxd va oplaouue pepixole axdun Bonfintixols dpouc:
p2=0, pa=1 ¢g2=1 ¢g1=0, g=1
Ané 10 Oedpnuo A.8:

/a0, a1, ...,/ = &, (n < N).

an

Etlvar téhpa ToA0 €6x0M0 VoL Yp1NOLLOTOLGOUUE T YEVLXE ATOTEAEGUATAL YLOL
o Q-noAudvuua HGoTE Vo GLUVEYOUUE amoTeAéouaTa Yo Tig axoloubies p,,
xat ¢ (Bhéne tov Optoud A.9) xon t0 ouveyés xhdoua fai,... ,an/. AUTH
elvar 1 mpooéyyion tou axoloufelton xon ot [7] xon [11] eved éha tor dAAa
BBila tne BuBhoypagiac dev opllouv xafdlou ta Q-tohudvuua oahhd Ee-
xwvoly opllovtag armeulelac Tt axolovlie p, xo ¢n. Qotdoo 1 uerétn
10V Q-ToAuwviuny dev divel ubvo Uia TANEECTERY YEVLXTH EXOVAL, oA £xEL
evdLapépoy axduo xat aveldptnta and autd To GUYXEXPUIEVO TAAGLO oy Ud-
Moo oxeprel xavelc To Oedpnua A5 xou T otevr oyéon ue toug aptBuoic
Fibonacci.

OeePHMA A.10 (1C.2). Ian >0 xat py,q, 6nwc otov Opioud A.9,

(3) Po = ap, Pn = GnpPn—1 + Pn-2,
(4) q0 3 Gn = @nQn—1 + qn—2,

I
—
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(5) Pnln—1 — Pn—1dn = (—1)"71,
(6) ]ﬁ . Pn-1 _ (_1)71—1
dn dn—1 gn—14n ’
(7) PnQn—2 — Pn—20n = (_1)nan’
(®) Pn_ Pnoa_ (LVan

dn qn—2 qn—24n
TTorisMA A.1l. Ay ta ry elvar énwe oty ayéon (1), téte yia 2 <n <
N,
Pn TnPn—1 +pn—2
/ao, ... 0y = — = ————.
dn Tndn—1 1+ Qn—2
A.3. Arnid ouveyr xhdoupata.

OrizMox A.12. "Eva ouveyéc xhdoua /ag, a1, ... ,an/ elvol anhéd av ta
ao, - .- ;N €lvor axépatol xot
ap > 0,a1 >0,...,a, >0.

Oa éyouue ndvta autr Ty utdleon yia To undiotno autod tou Kegalalou.

OEQPHMA A.13. lNan > 2, g, > qn—1, xat yian > 1, g, > Gn-1.

OEnPHMA A.14. Tan >3, g, >n xau yian>1, g, >n.

OEQPHMA A.15. Ita n > 0, ot aptbuol Qpii(ao,a1,. .., a,) xa
Qn(ai,az,... ,a,) elvar oyetxd mpdrot.

Xpnowwonowdvrog tov Optoud A9, autd amhd Aéet 6Tt (P, qn) = 1.

To enduevo Oedpnua amodetxviel 6Tl T gy, HEYUAGVOUY eXDeTXd WS TPOg
n. ' nteptocbtepa oyeTind Ue TNV ACUUTTOTIXY GUUTERLPORE TWY gy, UTOPEL
xavele vo avatpéZer ota [10].

OraruMA A16 ([5)). e dla tan > 2, g, > 2"7 .

OEQPHMA A.17. Kdfe nepittoc ovyxAivoy elvar ueyaditepoc and xdbe
dotio.

IMapatnpodue ot
9) [ao, a1, ...y an, 1/ = [ag, a1, ...,an +1/.

OeapuMA A.18 ([3],1D.10). Av 8Uo anAd ouveyri xAdouara /ao,ai, ...,an/
xat [bo,b1,...,bar/ éxovv v (e Twuri & xaw ay > 1, by > 1 t6te €yovue
M = N xat ta ovveyr xAdouata eivat (Sia, Snh. anotedolvrtar and tny (Sia
axorovfia uepixdy TnAixwy.

REMARK A.19. Xpnowonowdvtag v (9), Brérouue 6t to nponyoduevo
Oedpnua uovadixéTrnrag Loy Vet eniong xal 6Ty TEPITTWoT Tou €YoUUE any =
1,by = 1.
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A.4. IIéc0 x0vTd 670 cLVEYES XAAGPA elvat oL ouyxAivotég; "Onwe
xat Ly Exoune a; > 0y i >0, 2 = Jag,... ,an/ ®ol rp = [ap,-.. ,an/.

OropuMA A20. Av N > 1,n >0, tdre o Stagopée

Pn
L= ?a dn® — Pn
plivovy otabepd xat’ andAuty Tiul xaldc to n ueyaddver. EninAdoy
—1)"6,
(10) ot — pn = 0
An+1
omou
0<ép <1, yie 1<n<N-2 {6ny1=1
xat
n 1 1
(11) o Poj<—— <« =

' T lni1 @

yian < N —1. Kot o 800 avioétnres elvar auotnoés, extd¢ and tny
repintwon toun = N — 1.

A.5. Anepa anid ouveyr xhdopata, Xe auth ) evétnta o oploouue
To dmetpo ouvey T xhdouata To apyixd TUALATE TOV GTELPWY GUVEY MY XAX-
oUdTOV elval TEMEpAoUéva ouveyT xAdouata. Oa axoroulbricouue oe Po-
owée ypouués Ty mapovosiaon tou [3]. T meplocdtepa OYETIXE UE Ta
evdidueoa ouveyr) xhdouata unopel xavels vo avatpéler ota [5] o [11].

OpizMmox A.21. 'Ectw ag,a1,as,... W dreprn axohoubio axepolov ye
a1 > 0,a2 > 0,.... Téte 10 z,, = Jag,a1,...,a,/ elvor yio xdbe n, éva
a6 ouveyés ¥Adoua Tou avanaelatd évay pntd aplBud x,. Av o x, Telvel
070 6pLo T xabdS N — 00 TéTE Aéue OTL 10 drelpo anAd ouveyéc xAdoua
Jao,a1,a2,... [ ovyxAiver oty Tiul x o Yedpouue

x = /ag,a1,az,.../.

OroPuMA A.22. ‘OAa ta drewpa ouveys xAdouata auyxAlvouy.

Yuvende, yia xdfe n, ot n-oatol ovyxAlvovtec evéc dmelpou oUVEYOUC
xAdouatoc aynuatilovy uia avotned phivovoa axclovlia n onola ouyxAiver
oto . Ian mepittd, ot n-ootol cuyxAivovies tov a oynuatilovy uia

avotned phivovoa axorovbia nov ovyxAivet otox. Apa avz = [ag,a1,.../
TéTE!
BB P o BB P,

qo q2 q2m g2n+1 qs q1
lim Pan _ lim IM.
n—aoo (op n—00 (241
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OrizMox A.23. T xdbe Getind axépato 7 ue 1 < r < apqq ovoudlouue
10 ¥Adoua
PnT + Pn-1
GnT + qn-1
eviidueoo xAdoua.

OEQPHMA A.24. Ay z = [ag,a1,.../ t0te ) axolovbia
Pn—1 Pn T DPn-1 2pn + Dn-1 Gn+1Pn + Pn—1 _ D1

) ? bR
dn—1 Qn + n—1 2qn + qn—1 Ap+19n + qn—1 qn+1
elvar povotovy: avlovoa yia mepittd n xar plivovoa yia dptio n.

A.6. Yuveyh xhdopata xar Euxdeldrog AdydéetBuros. e auth ty
evotnta Oo ouuPBoiilouue to Satetayuévo {edyog ue TpdTo oTolYElD TO T
xon deltepo o y ue {z,y}.

OENPHMA A.25 (Ocdpnua tne Atalpeone yio guowols apluoic). Edy
x>y >0 xu z,y €N, t6te vndpyovy povadixol apifuol ¢ € N xou
v € N térowol dote

z=yq+v xa 0<v<y.
Yuuporilovue to undloimo v autic T Sialpeons ue rem(x,y).

OENPHMA A.26 (Ocdpnua tne Awalpeons yia mpoyuatixols, ve ¢ € N).
Edvae >y >0 xuz,y R, tdre undpyovy povadixol apifuol ¢ € N xou
v € R térowol dote

rz=yq+v xau 0<v<y.

Emnindéoy,

12 qg=1—].

(12) 5!

Yuuporilovue to vndloimo v autic ¢ Sialpeans ue rem(x,y).

OrizMox A.27. 'Eotw 3o guowxol aplbuol z,y. Aéue 6T 0 y diopel
Tov & xou Ypdpoupe y | x, av xow wévo av rem(z,y) = 0, xor cvufoiilovue
Tov wéyLeTto xowvd dratpétn Slo guowdy aplBudy x,y ue (T,y).

AlybpBuog avdntuing o cuveyés xAdowo. e xdbe mpayuotixd
aptiud T avtiotolyolue 800 TEMEPAOMEVES 1) dnelpeg axoroubies axepaley
ag, a1, - .. xat £,&1, ... TEAYUATXAY 0 EERC:

1. 'Eotw ag = |z|, & =z — ap.

2. Av éyouv oprotel T ag, - .. ,an, o, - - - 5 Ep, o &, # 0, Té1E BéoE

1 1
an+1 = LSTLJ’ Ent1 = ? — Qn+1

n
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3. Av &, = 0 t6t€ 0 alybptbuoc teppatilet xat anodidet to ag, a1, ... ,ay
xat T oy -, &

REMARK A.28. Ilupatnpeiote 61t 0 ahydpilbuoc emotpéget emnhéov ol
o Thpn TAxa Ty = [y, ... ,an/ Tou &, agol ya &y, # 0,
1
Tm = e
Ac dolue duwe T axpBde xdvel o ahyéetbuog. ‘Ooco elvan &, # 0, autdg

. s . Ly
0 optouodg eyyudton 6t 0 < €11 < 1 €T0L TOU 0 Gy = L?J elvon évag
n
Oetinde axépatog avotned ueyaiitepog tou 1.

Eav &, = 0 161 0L 1006TNTEC app1 ot Epp1 eV opllovion xaL o ahyd-

ptluog otopatdet, emotpégovtag Ty axoroubia ag, a1, . .. , a, onéTE TO GU-
veyég xhdouo mou avitotolyel oto x elvar To [ag, a1, ... ,a,/ xou o x elvon
pnToc.

Mrnoget xavelc va €yet uto xahbtepn eedva Yo 10 Twe AELtToupYEel 6 aryo-
ptluog edv yedder ta tpla tpdta Bruatd Tou:
1 1

=)+ ———=....
a1 + & 0 1

a +
! az + &2

OEQPHMA A.29 (1G.5). Edv n > 0, xat ap,&, > 0 elvar n axorovbia
mov avtiotory(let oto T 0 adydpiluoc avdntuéne oe ouveyéc xAdoua, téte

x = Jag,...,an +&/.

OENPHMA A.30 (Opbétrra Ahybplfuou avdntuing ot ouveyéc xhdoua).
(1G.6) I'a tpy axolovbia ag,aq,... ,a, mou avtiotolyilet oto © 0 adyd-
ptuoc avintuéne oe ouveyéc xAdoua, €yovue otL:

(a) Av x pntéc téte o alydpibuoc tepuatiler ue &y = 0 yia xdrow
N >0 xat elvat x = [ag, ... ,an/, (ue an > 1 edv N #0).

(b) Av x dppnroc, téte &, # 0 yia dla ta n, ondre o adydplfuoc dev
tepuatilet, xo

r=ag+& =ap+

z = lim /ag,a1,...,a,/.
n—oo
Edv xdvouue epoapudaouue Tov ahyopliuo avdntuing o cuveyés xhdouo
Yior XATOLOUC YVOPLULOUC aptiuols Talpvouue:
423
% = /17172727174/7
T =/3,7,151,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,... /,

e=/2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,. ../,
¢=/1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... /,

? ? ? )
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5

OEQPHMA A.31. Kdfe pntdc aptbudc x unopel va avarapaotaldel ue éva
TEnEPUOUEVO ouvEXES xAdoua. EmimAéov auty n avarapdotacy lvar yova-
Suxif edv arnaitioouue va elvar ay > 1.

omou ¢ =

PRrROOF. Ané 1o Bedpnua A.30 €yovue ula nemepacuévn avanapdotoot
Tou T UE ouveyés xhdouo. Ané to Oedenua A.18 éyovue bt auth elvan
HovodLxH. =

Oa dtatundoouue Tépa Tov Euxdeidio Ahydetbuo xou Ou Sotue 61t 0 alyo-
ptlog avdnTuing tou & oe ouveyéc xhdouo Uropel va dtotunwlel cav Ui
edur] meplntwon tou Ewdedelou AiyoplBuou dtay autde egopuootel o
dvo aptBuols z,y € R.

EuxAeiderog AhybpiBpos. e wdfe Ledyoc npayuotindy aptBudy {z,y}
uex > y > 0 avabétouue do nenepaoUéveg 1 dnelpeg axohoubies ar, as, as, . . .
X0l U_1,V0,V1,V2,... O EEAC:

1. ' Ectwwv_1=z,v=y

2. Av e v_q, ..., 0,a0, ... a5 Exouy oplofel xal v; # 0 Tt and To
Oedpnua e Atalpeong, TEEE Vi1, Qj41 TETOLA DOTE
Vi—1 = ViQi+1 + Vit1 0 < w1 <wy
3. Av v; = 0 t6te 0 ahydpLBuog tepuatiler xou amodidel v_1, Vg, ... ,Vi—1
HOL A1y sy e

O ewxheldloc ahybplBuoc dovietet yia to Ledyoe {z,y} dc efhc:

T=ya +v O<u <y
Yy =viaz + U2 0< vy <y
U1 = U2a3 + U3 0< vz <wo

Un—3 = Up—2ap-1+tUp-1 0 <vp_1 <Up_2
Un—2 = Up—1Qan v, = 0.

Av z,y elvan Betixol axéparot, téte E€poupe 6L 0 ahydplbuog tepuatile
agpol to undhowmo oynuatilovy uta auotned @hivouca axoloubia Getindy
axepalwy, ondte v xdrowo n € N Ba elvon vpy1 = 0. Av wotéoo 1o z,y
ebval mparyuatixol, unopel o alydplBuog va unv tepuatiler, xou téte SAa 1o
unéhoima elvan yvhola ueyohbtepa tou 0.

Emumiéov av z, y elvar Oetixol axépotol, téte to tereutalo Hetxd undrotno
Vi—1 LoOUTOL UE TOV PEYLOTO xOLVE BLotpétn Twv & xat y. Autd unopel xovelc
val To deL av AdPBer unddLy Tou TNV TopaXdTw Ay TopaTienoT: o

r=yq+v with 0<v <y,
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t61e T Levydpra {z,y} xon {y, v} €xouv axpiBdc Toug [Stouc xotvolc dtoi-
pETES.

OENPHMA A.32. (a) Av vdoroifioovue tov Evxdeldeio AAydpibuo yia to
levyoc {x,1} téte ¢ = Jar,... ,an,.../ On0U ao, ... G, ... elvar ta 1y-
Alxa wou eupavilovrar otov Euxdeldeio Adydpifuo.

(b) Ay z = % ue h >k, ta (dia wpAixa Ga eupaviotoly xar av viomoir-

ooupe tov Euxideldeio Alydpibuo yia to Ledyos {h, k}.

A&ilel va mopatnprioel xavelc 6L 0 Aéyog YLlo Tov onolo Ta a, XaAoUVTaL
uepted TAlxa elva 6Tt ouunintouy ue ta Tnilxa to omota eupavilovial GTov
Euxieldero Ahyépibuo yia to Levydet {z, 1}.

H ovomopdotaon mou yog divet o ahydptBuog avdntuing oe ouveyés XAd-
oua pog divel T SuvaTéTITa Vo aVATOpLOTOUUE EVay Ted Y oTind apldud ue
Tov Babud axplBelag, dnhady| to urixog ouveyols xAdouatog, tou Ho emié-
Coupe. H A1 avanapdotaot mou }pnotdonotobue cuviing yia Toug Tpay-
uatixole optBuolc elval 1 dexadixr. Yto Eddgo 1J Ha anodetouue 61t ot
TPOCEYYIOELS UE CUVEYY XAdouaTa Exouy TNy Wtdtnta va elvar BélTioteg
npooeyyioeig (best approximations) twy aptudy, Wiétnta 1 onola éxel
Wraltepn onuaota vy v Dewpnuxd épeuva. Hap’ 60 autd duwe amodet-
xvieton 6Tt elvan tepimhoxo 1o var xdvel xavelg mpdéelg ue ouvey T, xAdouata
(BMéne Hurwitz 1891).

B. Avdlvom péong nolunhoxdtntag tou Agarpetixol Euxher-
oeiov aAyopiBuou

Ye autd 10 Pépog Tne dimhwuatixrc epyaotog Ba embécovue Ty anddeln
eVOC AOLUUTTOTLXOU TUTOU Yol THY UEGY) TOAUTAOXOTNTA TOU UQULPETLXOU
Euxhedelou ahyopibuou, to gruiouévo anotéieoua twv Yao-Knuth ané tny
dnuooteuon [6].

B.1. Ipoxatapxtixd. To anoteréopata mov Oa YpnolUuoToL)GOVUE Xal
gyouv oyéorn ue ouveyn xhdouota Ba elvar Tohd Alya, wotdéco elvar on-
LavTied vo €yel xovelc uta yevxotepn eCoxelwon ue ta ouveyr xAdouoto
xafde xat Tor Q-ToAUGYLUL Yo VO XOTAYOHOEL TLS amodel&ele Tou TpGHTOoU
MEPOUC AUTOU TOU XEPAAALOL.

Agargetinds Euxheldiog alydpiBuog. Aobéviwy dVo aptBudy, avtixa-
Olotolue enavetAnuuéva Tov PEYAAUTERO antd Toug dUo UE TNV dlagopd TeV
dvo uéypl xat ot Vo aptbuot va elvar {oot. O uéylotog xowvdg dlapétng tewv
dVo aplBudy elvon 1 xoLvi T,
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IMo napddetyuo:

{18,42} — {18,42 — 18 = 24} — {18,24 — 18 = 6} — {18 — 6 = 12,6}
— {12 -6 = 6,6}.

enouévwe 1 andvtnon elvon 6, v o aptBuds Twv agotpeTixdy Brudtwy elvat
4.

O agopetinde Euxdeldiog Ahydplfuog unopel vo dtotunwbel o avetned
we e€Ne:

1. Avu =17%v =1 otaudta anodidovtac 10 1 w¢ andvinon.

2. Av u = v, otaudTo omodidovtog TO U 1S ATAVTNOT).

3. Av u > v Béoe u « u — v xon Tiyouve oto 1.

4. Av u < v Béoe v «— v — u xot Wiyove oto 1.

1o napddetyua pag o EuxhelSiog aiydplfuog pe ypror Swalpeorg elva:
42=18-2+6
18=6-3+0

1) avdAuoT) Tou . o OUVEYEC HAdoua Elval:

. S 0,2,2,1
YCh - -1 /0,2,2,1/
24 < 2+ ]

2 —

* 1

n=2 ¢=2

O apBude Twv apapeTixdy Brudtoy elvor 24+2=4. Auté elval hoywéd: 10
va Stonpéooupe 800 aptiuolc n,m tétoloug Goten =¢-m+r, 0 <r <n
elvat 1o (BLo pe To v agalpolbue To m and 1o n, ¢ vopéc. (Ouunlelte 6Tt ta
ueEd TnAlxa oToy akydplbuo avdntuing evég aptBuol oe cuveyEc xhdoua
dev elvar dhho and ta TnAixa otov Euvxkeldio Alydplbuo.)

Enopévng 1 Swalpeor 42 = 18 -2 46 avtiotouyel otic e€¥g 0o agurpéoetc:

{18,42 — 18 = 24} — {18,24 — 18 = 6},
evé 1 dadpeon 18 = 6 - 2 4+ 6 avtiotoryel ot e€¥g dbo agponpéaerc:
{18 - 6=12,6} — {12—6 =6,6}.

Y10 mopddelyud vag ot 300 Suvatéc avalloelg oe cuvey T xhdouata glval
/0,2,2,1/ xon /0,2,3/. O Aéyoc yia Tov onolo emAEYOUUE TNV avdAUoT)
/0,2,2,1/ xou dev mpochétouue to tehevtaio 1 6Ty UETPAUE T UQPULPETLXG
Brota, elvol Twe av VAOTOLRooUUE ToV YVvoo1d Euxieldio alydplBuo aviixo-
Ootdvtag xdbe dwalpeon ue tig avtlotolyee agopéoets, avayxalduaoTe Vo
xAvouue éva ETLTAEOY agonpeTixd Briua and 61t av uhorotoboaue Tov AgoLpe-
w6 Euxdeldio AhyépBuo yia tov uéyiato xowvé dtapétn. Xto nopddetyud
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wac auté elvan 1o {6,6} — {6,0}. (O agarpetinic ahydplbuoc tepuatilet
6tav oL dbo aptBuol tou Ledyouc elvat toot.)

Opizmox B.1. 'Eotw 1 = r(m,n) o apfuds tov dtatpéoewy Tou mpo-
yuartornotel o Euxeldiog Alyoplfuoc.

OEQPHMA B.2. @ dda ta n > m > 2, r(m,n) < 2logm. Enouévwc
r(m,n) = O(logn).

OpizMoOx B.3. 'Eotw S(n) o uéooc aplfude Prudtov yia va utohoyi-
oovue tov (m,n) uye tov Agopetind Euxheldeto Alybpibuo, dtav 1o m
XOUTOVEUETAL ouoLbuopga oto Stdotrua 1 <m < n.

To xbpto Bedpnua tou Bo arodel&ouue elval:

OEQPHMA B.4 (Yao and Knuth).
S(n) = %(11171)2 + O(log n(loglogn)?)
7r

Eiva gavepd 61t auth 1 anddetln elvat anotéheoyo utag TOA) TpoceEXTIS
avéyveons xa oe Bdboc xatavénone tou dnuoocteduatos [4]. Qotéoo o Heil-
bronn mpoondinoce vo anavioet wa apliucewpntind epdtnon, 1 anddelln
TN¢ omolag TEMXA GavVIXE OTL TEPLEYEL TNY UVEAUCT) TNE MECTIC TOAUTAOXOTY-
Tog Tou (Srawpetinol) Euxdedelou ahyoptbuou.

'Eotw |x] o peyahltepos axépatog mou éyel Ty Widtrta va ebvon utxpd-
1epog 1) loog Tou .

Téte x mod y =z — yLEJ etval 1o unélolmo NG DapEGTS TOU T UE TO Y.

Av 1 < m < n, 61 and tov ahydptbuo avdntuéng oe ouveyés xhdouo
undpyet uovadixy) (e€attlac tou 1 oto téhoc) menepaocuévn axoroublo oxe-
palwy TETOL GoTE

m
g:/qul,q%-u 7qT71/

Emuniéov ta g; elvon ta iniixa nou eugaviCovion otov Euxheldeto Ahyopibuo
m
(mou yenowwomotel dtatpeon). 'Eyoupe 1 < m < n, enoyévog — < 1 Ac
n
unoféoouue 6L N e€lowon e dtalpeons yia to Lebyog {n, m} elvau:
n=qm-+ry, 0<ri<m

, m m 1
Avri =0tbte —= —= —.
n qm q1
AMde av r1 # 0 elvon

1 1

mqy + 71 1

m

1
n n
m
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6Tou
n 1 n mod m
q1 = |_7J7 — = — < 1.
m m m
, , nmod m ; , ,
Tdpa agol — < 1 ynopolue va cuveylooupe tov ahyoptiuo avtixoa-

B m  nmodm
Ootdvtag 1o — ug ——.
n n

O aptbude Ty agapéoewy yia va utohoyicouue tov (m, n) elvat oxpBoc
q1+q2+. . .+ Gp, €ETESY| AQALPOVUE TOV UXEATERO UXEPOLO M UG TOV UEYOAD-
TEPO N «BGEC POPEC UTOPOVUEY, SNAadY ¢1 = L%J popEc, dnhady) agatpolue
Uéypl To umdAoto va elvat aLGTNHEE ULxPSTERO amd TOV UEYOAITERO aptiud.
Téte notdue néoeg Popé UTOPOVUE VAL OPULPEGOUUE TO TEOTYOUUEVO UTE-
Aowmo ané tov uxedtepo aptbud. ‘Etol BAénovue 6Tt o Aguipetinds Evxel-
detog ndvet axplfag Toug (Bloug unoroyiouolc ue tov Euxieidio Alyépliuo,
av oe auTtév Ulomolfooupe TN Statpeon pe Sladoyxés apalpéoels, £ToL BOTE
xdfe dialpeon ue mpAixo q avrictoyel oe q apapéoeic Tou (Siov aptbuoy.
Extdc BéBara and to tereutaio Briua, oto omolo xdvouue g — 1 agarpéoelg,
dHote vo xatalhZovue oe 3o aptbuole, mov va elvar toot uetalld toug (xon
UE o LEYLOTO %06 Blonpétn), avtl va xataihEouue e éva 0 xon To PEYLoTo
%06 danpén.

'Etou edv Bécouyue

C(m7 n) =q1 (ma ﬂ) +.+ qr(m,n) (m7 n)

161€ 0 péoog aptude Brudtoy tou Agatpetivod Euxiedeiov aiyopiBuou Ha
elvat

n r(m,n)
(13) S(n) = > Clm,n) _ S >t gi(myn)

n n

(to m elva opotbuopga xataveunuévo oto [1,n] xou étor  mbavénta va
TETUYOUUE ULl GUYXEXPUEVT T Tou m elvon —.)
n
Y1 ouvéyela Oo avdyouue to TpoBAnUa Tou unoloyiopol tou abpotoua-

TOC TWY THAXWY ¢;, 6T0 TPOBANU TOU UTOAOYLOHOU Tou TARBous TwV AICEKY
e ellowons zz’ + yy' = n xdtw and ouyxexpuéves cuvhiixes.

Orixmox B.5. T n > 1, wa tetpdda {x,z',y,y'} elver wio H-avanap-
AGTAGT TOU N oLV

n=zx'+yy, (z,y)=1
x>y >0, 2 >y >0.

To 6voua H-avarapdotaon 860nxe and toug Yao xav Knuth npog tyurv
tou Hans Heilbronn, o xon glvot uior ehagppedc TOOTOTOLNUEVT LOPPT| ULUS
avanopdotaone Tou bpoe npdtoc o Heilbronn oto Snuooicuua [4].
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OEQPHMA B.6 (3A.7). Yrdpyet wia 1-1 avrotoryla uetald twy H-ava-
rapAoTEoEWY TOU N Xt Ty Statetayuévey (euydy {m,j} dmov

1
0<m<§n, and 1<j<r(m,n).

Emindéov edv n {z;,25,y;,y;} avriotoiyel oto {edyoc {m,j}, xaw q; elva
10 j + 1-0016 uepixé nnAixo ovo ouveyés xAdoua

m
E :/0,(]1,(]2,... s 4y -- 7q,r.,l/,

2
Tote

/
]:/07qja"'aq1/ 3:/anj+17"'7q1’71/
ZL’]' .’Ej

XL OUVETLOC
(14) 15| =g;.
Yi

Ac onueiwbel e3¢ 6tL 1 anddelln oto Oedpnua B.6 nou Ho ddooupe 8O
dev elvon 71 St he auth mou mapovodletol oty dnuocieusy) Twv Yao xot
Knuth, od\& elvor ol nopduow pe v anddelln nou édwoe o Heilbronn
oto [4] wow Slver yta ToAd xahUtepn emontela yia To T axpBde elvar yia
H-avarapdotaon. O avadpouxés Wiotntes twv H-avanapaotdoewny mou
avadewxvbovtar and v anddelln twv Yao xau Knuth nopovoidlovial oto
Mogdptrua.

TTorisMA B.7 (3A.8).
nS(n) = QZ%J +1— (nmod 2)
énou to dfpeotoua elvar yia 6Aec ¢ H-avanapaotdoeic tou n.
YuuBoAilovyue ue

SE

Y
10 d0potopa yia Siec ¢ H-avanopaotdoelc tou n ue 'y < %n
Téte oy de

(15) ZL%J = Z,ng + O(nlogn).

B.2. Avaywyd tov npofifuatos. To mopoxdtw Bedpnua xabopllel
1

roéc H-avamapaotdoeic tou n avorowoly y z'y < 5”’ oL GUVETOC

I3 2 7 ! Ve ! m
oc dtvel évay tpémo va utohoyicouue To dfpotoua E L;J
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OEPHMA B.8. Av ',y > 0 xau 2’y < in, tére undpyouv H-avanapa-
otdoeic (x,2',y,y") Tou n av xa udvov av

(y,n) = (y,2").

Kau érav auté woyver vndpyouv axpiBec (y,n) [1(1 —p~!) téroiec H-ava-
TapacTdoElS, OmOU TO YvoueEvo elval yLa 6AoUc TOUS MpTouc p ot omolot

Statpovy tov (y,n) aAdd dyt to .
posv wov L) A& e w0 1y 5

OrizMmox B.9. 'Eotw

P(n):@:ﬂ(l—l)

n p
pln

xor éotw P(n\ m) to nopduolo YLvOUEVO Yia GAoUG TOUG TPGHTOUG ToU dton-
po0V 0 N aAAG byt To m, dnhady

pi\m) =] (1-1).

OraPHMA B.10. o xdfe n > 2,

(16) ZL%J:Z Z P(%\J) Z jﬁkﬁ-O(nlogn-loglogn),

m|n (j,m)=1 (k,j)=1
2
1§k<’2ﬂTj

énov 1o dbpoloua ota apiotepd elvar yia dAec tic H-avanapaotdoeic
(,2',y,y") toun. FEnouévec,

(17) nS(n) = QZ Z P(% \ ) Z gﬁk‘ + O(nlogn - loglogn).
m|n (j,m)=1 (lw')=12
1§k<’2ﬂTj

B.3. Acvpntwtixol tinot. Xe auth ) evétnra Ba anodellouvue uept-
%00U¢ QOUUTTOTLXOUS TOTOUS Toug omoloug ot cuvéyela Oa yenoldonolr-
ooule yla v tpooeyyloouue to S(n). Oa ypnolponolfioouue ToAés Oeue-
MOSete 18éeg xan évvoreg g Bewplag aplBudy.

AnmMMmA B.11. Ay p mpdrog apibudc,

1
Z in = O(loglogn).

pln

AHMMA B.12.
Inp

(18) Z@m%) = Z?P(n\p) = O(loglogn).
d|n

pln
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AHMMA B.13.
hd

(19) 7

= O((loglogn)?).
d|n
AHMMA B.14. o xdfe © xau xdbe j,
1
Z 7= P(j)Inz + O(loglog j).

(k,5)=1
k<=

OpizMox B.15. Opiloupe 10 pg(r) wc e€hc:

Nd(r) _ { N(r)a if (da T) =1

0, AANLOC.
AnMMA B.16.
P(j\d
Z M m)Inx Z ud +O (loglogm)
(J',_7r<l):1 J (r, ﬂl) 1

(helmet 1) anddelln, 20 XentepBelov)

AHMMA B.17.
P(j\d)Inj 1
Z M == )(In z)? Hd + O(log z loglogm).
(Gym)=1 J 2 (rm)=1
j<a r<o

(helmer n anddelln, 20 XenteuPplov)
B.4. Kotahnxtuxd BAnate. And tov oploud tou P(n) elvan pavepd ot

P(a\ b)P(b) = P(ab) = P(b\ a)P(a)
2

"Eotw N = 7;— Ané 1o Oedpnua B.10, éyovue 61t
n

ZLZ; Zm Z Pla\d) Z %+O(nlogn-loglogn).

mln  @Gm)=1 J (k,5)=1
<N k<13l‘

Xpnowornotévtag to Afuuata B.14, B.16 xav B.17 xon yetd and opxet
doukeld xataAYoLUE GTO 6TL

ZL | = fz ( )(Inn)? Z ,un +O (nlogn(loglogn)?).

m|n r<N

Mnopolue va enextelvoupe to dpoloua w¢ Tpog r Péypl 1o 00, agol and
v (59) (4 and [3], Theorem 315), éyouue

= Z 1=0(n) vy xdbe € Getnd

m|n
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pdeds

Zm Z %2 = O(n%“).

mln r>N

"Etot agol ypnotuonotévtog amhd ETLYELRHILATO TOU ANEL0oTLX00 Aoylouol
1 .
(Inn)? -n27c = O(n), éyouue

(20) ZL;J

= 2 mP()Pm)nn)? Y- 1 O(miogn(loglogn)?)

m|n r>1

O Baowodg tinog mou Ba yeetalduaote elvon

n(r) Iy 6 141!
(21) > —g(l‘p?)wg(l‘pz) -

Bhéner xavelc 6t €da elvon mou gugaviletar 1 otabepd — 7 onola lowg

Eevilel Tov avayvohotn otay dwfBdlel yio tpdtn gopd to Oedpnua B.4.
Méver anhd va utoroyioovue to dhpotoua

> mP(=)P(m).
m|n

10 omolo Suwe elval UL TOANITAACLAOTING GUVEQRTNOT) TOU 71 TEAYUU TOU

onuaiver 611 apxel va v utohoyicouue étav n = p*. Eivar
. i .
p (") ¢(pY)
S mppm = 3 pOE e
m . prrp
m|pk 0<j<k
. 1\2 1
= > pj(l - *) + (p°+pk)(1 - *)
0<j<k p p
1
k
0-2)
P2

Erouévog yio n = pi*t - p k| raipvouue

Zmp(%)P(m):Plkl ept (1_ ih) (1_ ikl)

D1 b

- T1(0 )

pln

m|n
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1 e€lowan (20), ue yeron e (21) yivetou:
€z, 1 2 n 6 151
ZL;J = i(lnn) ZmP(E)P(m) . H (1 _ E)

m|n pln
+0(nlogn(loglogn)?)
1, 1\ 6 14-1
=gt 1 (1= ) 110 - 5)
pln pln
+0(nlogn(loglogn)?).

"Etol tehuxd
3
ZLEJ = —Qn(lnn)2 + O(nlogn(loglogn)?).
y T
Kot yenowornolévtag 1o Iléploua B.7, naipvoupe tehixd to Oetprnuo B.4:

S(n) = %(lnn)2 + O(log n(loglogn)?).

Hopatneriosts. Ou fitay Wialtepa EVELAPEROY VoL AVATHPAYOUUE XATOLEG
Wrattepa evdlagpépovoes nopatnphioes and to Biilo [1](Siver Wialtepo mpo-
CEYUEVES, EXTEVELC XAl TATIPELS AVOPORES OTAL EPELVTTIXG ATOTEAEGILATA TOU
oyetilovtal pe Tig evéTnTes mou avahlel) xat To dpbpo [12].

H uetpud Dewpla Twv ouveydy xhaoudtwy Oepehdinxe pe epyaoties twv
Gauss, Lévy, Khinchin, Kuzmin Wirsing and Babenko. Qotéco autd ta
anoteréoyota dev unopovy va Bonfhoouy atny avdiven tou Euwdeldelou
Alyopifuou v Betinolc axepatoug, Tou dtaxpttol avaAdyYou Tou alyoptd-
uou avéntuéne oe oLVEYES XAGGUA, ol oL pNTol Exouv UETEo UNdév aToug
npayuatixols aptiuots. Ol npdtol mou Edwoay avdiuor yia T LEor) ToAU-
mhoxétnTa Tou (Sonpetxod) Ewdedelov AkyoplOuou Ytay o Heilbronn [4]
xot o Dixon [1970, 1971] xow ov 800 aveZdptnta. Evd o Heilbronn yern-
owonoinoe cuvduaotxés peblddous, o Dixon ypnowwonoinoe mbovotixée.
Axohollnooy ddgopes Pedtidoels Tou Topdyovta o@dAUaTog HETAED TOV
Moy xat ané tov Knuth. IToad apyétepa o Hensley [1992] €detle 61t o
aptiuds twv dwnpéoswy Tou mpaydatonoel o Euxieldiog Alyodplluog yia
ho T Leuydpa (m,mn) e 0 < m < n < z axohouBel ACUURTWTIXE TNV
xavovixl xotavous, ue uéon tud nepinou 12(log 2)7 =2 log z.

O Plankensteiner [1970] uétpnoe tov apud twv Levydy (m,n) yo ta
onola 0 Euxdeldetog AlybplOuoc npayuotonotel axplBée k Bruata.

M apxetd Swapopetixt| TpooéyyLor 1) onola umopel vo dGoeEL anotehé-
OUATO TIOU apopoUY ToAholg ahyopibiuoug Tapduotoug pe tov Euxheldelo,
%ol 1) omolol UAALGTO EXTES amd T WECT) TUTH TNE AOLVUTTOTIXAS XATAVOUNS,
dlvel xaL i porée TdEng k mpotdbne and ) Vallé [12].



CHAPTER 1

AN INTRODUCTION TO CONTINUED
FRACTIONS

In this chapter we will present the basic facts about continued fractions.
The presentation is mostly influenced by [3] and [7], but also [5] mostly
when it comes to good approximations. Another very helpful reference
was [11], which offers an excellent overview of the theory of continued
fractions, the only drawback being that everything is left as an exercise.
As for the book [8] by S. Lang, it presents the really tight connection
between continued fractions and diophantine approximation and has an
outstanding presentation of the algebraic aspect of equivalent numbers.

1A. Finite continued fractions

A finite continued fraction is an expression of the form

N 1
z )
0 1
rn+—
T2+ . 1
e
TN
in the variables z1,z3,...,x,. We can formally understand a continued
fraction as an element in the field of rational functions R(x1,...,Zy,-..)

where R is a ring with unity.
For convenience we will use the notation

/ZL’(),ZL’l,...,.’IJN/:.’IJ()—F 1
r+—
T2+ . 1
e
N
In general the variables zg, x1, ... ,x, may be evaluated over R, C,Z or N.

In most cases we shall evaluate them over N or Z.

19



20 1. AN INTRODUCTION TO CONTINUED FRACTIONS

DEFINITION 1A.1. Continued fractions can be defined inductively as fol-
lows:

/o] = w0,
1
Toye-. yTpr1/ =Tg+ ——m.
/ ’ o / /331,~-~7=’17n+1/
In this way we find that:
1 Tory + 1
[xo,x1/ =20+ — = ———
I 1
1 + 2 +
/:U(),.’I/'l,l’g/ = X9+ = Tor12 2 Io.
1 ToT1
I + —
T2
DEFINTTION 1A.2. We call zg, 21, - ,x, the partial quotients or just
the quotients of the continued fraction.
DEFINITION 1A.3. For m < N we call
(22) T = [Ty T, TN/
the m-th complete quotient of the continued fraction /zg,x1,--- ,zn/.
We observe that:
1
(23) [0, T1, o Tony Tint1/ = [T0, X1y ooy T +
LTm+1
DEFINITION 1A.4. We define the polynomials Q,(x1,z2,...,2Z,) of n
variables, for n > 0 by the following recursion:
(24)
1 ifn=0
Qn(ml,:cg,... ,l’n): T ifn=1
T1Qn-1(22,... ,2n) + Qna(z3,...,2,) ifn>1

THEOREM 1A.5 (L. Euler). The polynomial Q(x1,22,... ,2,) is the sum
of all terms produced by starting with the product:

1.mlux2-..mn
and omitting zero or more nonoverlapping pairs of consecutive variables
Tj Tj41.

PROOF is by induction on n.

Basis: The result is trivial for n =0, 1.

Induction Step: Assume the theorem holds for & < n, and notice that
we have two kinds of terms produced by deleting zero or more nonoverlap-
ping pairs from 1-zq---x,: the ones that contain z; and the ones that
don’t.
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To obtain the terms that contain 1 we omit zero or more nonoverlapping
pairs of consecutive variables from the product 1-z9---2,. Using the
induction hypothesis the sum of these terms is £1Qn—1(22,... ,2y).

As for the terms that do not contain 1, they also do not contain z (the
only way to omit x; is by omitting the pair z122), so we obtain them by
omitting zero or more nonoverlapping pairs of consecutive variables from
the product 1-z3---z,. Using the induction hypothesis the sum of these
terms is Qn—o(3,... ,2,), which completes the proof. -

In this way we get:

Q1($1) =T

Q2(z1,22) = 122+ 1

Q3(x1,22,23) = T1T223 + 1 + X3

Qa(x1,22,23,24) = 21222384 + 2124 + T324 + X122 + 1.

DEFINITION 1A.6. We define the sequence (Fy)nen of the Fibonacci
numbers as follows:

Fhb=0, F=1
Foio=F,11+ F,, for n>0.

THEOREM 1A.7. The number of summands appearing in the polynomial
Qn(x1,%2, ... ,x,) is equal to the Fibonacci number F 1.

PROOF. This is obvious for n = 0,1 and inductively, the number of

summands that appears in Q,(z1,%2,... ,%,) is
Qn(L,1,..., 1) =1-Quno1(L,..., 1)+ Qu_s2(1,...,1) by (24)
=1-F,+F,1 ind. hyp.
= I'n41- Def. 1A.6

The Q-polynomials are symmetric in the sense that:

QnJrl(fL'Uamla s 7xn) = QnJrl('Tna ce ;1'171'0)-
This is an immediate consequence of Theorem 1A.5: this specific permu-
tation of the Q-polynomial variables leaves the pairs of successive terms
unaffected and is moreover the only permutation with this very property.
Consequently for n > 2,
Qnlz1,22,. .. ,20) = 2,Qn-1(1,... ,Tn-1) + Qu_2(x1,... ,Tpn_2).

The basic property we will use several times in all four chapters is:

THEOREM 1A.8.

Qn+1(a70,$1,... ,.’I/‘n)
o, L1y... ,T =
/ ’ ’ ’ n/ Qn(xl,'TQa"' 71;77,)

(n <N).
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PROOF. By induction on the number of variables n.
Basis:
1 Tox1 + 1 _ Qg(l'o,l’l)

To,T1/ =To+ — = =
fro, o1/ = 20 T T Q1(z1)

Induction Step: Suppose that the hypothesis holds for n variables, so
that:

Qn(x1,... ,20)
JT1,20 ... 2y = On (o),
Then
1
/To, T1,. .. ,wn/—xo—Fm
1
=Tt Qn(z1,-.. ,xn)
anl(l’g,... ,.’L’n)
20Qn(x1, .., xn) + Qno1(2,. .. )
N Qn(r1,22,... ,%0)
- Qn+1(.’E0,.’IJ1,... ,ZL’n)
Qi To, ... 1) "

1B. Fundamental properties of the Q-polynomials

In the first two proofs of the section we will use 2 x 2 matrices. The
idea is that since we use induction of depth two, the properties of the Q-
polynomials can be demonstrated clearer by use of 2 x 2 matrices. Many
similar proofs use this technique. Of course the use of matrices is not
necessary, it just gives more elegant, proofs.

THEOREM 1B.1. Forn > 1,

Zo 1 T1 1 In 1
1 0 1 0/ L1 o0
[ Quyi(mo,-.. xn) Qu(zo,... ,Tp_1)

B ( (@1, @n)  Qnoa(@r,... Tn-1) ) '

PROOF is by induction.
Basis. We compute:

(0 5 ) (5 8 )= (ot )= (G @),
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Induction Step. Using the definition of the Q-polynomials and the
inductive hypothesis, we have:

xro 1 r1 1 Tn 1 Tn+1 1
1 0 1 0) L1 0 1 0

( QnJrl(an“- :xn) Qn(an“- ,1‘71,1) > < Tpt1 1 )
Qn(z1,... ,Ty,) Qn-1(z1,-.. ,2p-1) 1 0

— ( $n+1Qn+1($07--- ;wn)+Qn(~T07--~ 7xn—1) Qn(xlv-“ 7=/L'n) )

xn+1Qn(xly - 7$n) + anl(xla S axnfl) anl(xla e 7$n)

_{ Quia(mo,. - s 2Znug1) Quir(zo,. .., Tn)

B ( Qn1(x1,. -, Tnt1)  Qu(T1,... ,20) > n
THEOREM 1B.2. Forn > 1,

Qn(ﬂfg, e ,l‘n_l)Qn(J}l, e ,J,‘n) — Qn+1(l‘o, . ,J}n)Qn_l(l‘l, . ,an_l) = (71)”

PROOF. We just take the determinant of both sides of the first matrix
equation of the previous theorem:

) 1 1 1 In 1
1 0 1 0 1 0
— Qn+1($0,... 717n) Qn(l'O:-'— 7-77n71)

- Qn(l’l,... ,.’L’n) Qn_l(.’l/'l,... ,ZL’n_1)

so we conclude that

(_1)n+1 = Qn+1($0: s 7=/I;n)anl(-T1> s 7=/I;n71)

- Qn(an"' 717n71)Qn+1($1,-~- y Tnil),

from which we get the desired result by multiplying both sides by —1. -

THEOREM 1B.3. Forn > 1,

Qni2(xo, - s Tny1)Qn-1(x1,... ,Tn_1)

= Qn(wo, ... ;0 1)Qni1(z1,. .. ,Zpy1) = (—1)

PROOF. We compute directly from the inductive definition:

+1
" Tp41-

Qnia(zo, -, Tn+1)Qn-1(z1,...,Tpn_1)
—Qn(zo,y- - 3 Tn—1)Qnt1(T1, -+, Tpt1)
= (Tp+1Qn+1(xoy - - 2n) + Qn(To, .-, 20))Qn-1(z1, ..., Tp—1)
= Qn(xos - 1) (T 1Qn(T1, -+, Tn) + Quo1(T1, .-, Tn-1))
= Zn+1[Qn+1(z0, -« s 2n)Qn-1(21,... ,Zpn_1)

—Qun(xoy e Tn—1)Qn(x1, ... ;1)
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Now we can use Theorem 1B.2) to simplify the formula:
— B (1) (—1)" = (— 1) |

The following simple theorem is of great significance for the work in
Chapter 3.

THEOREM 1B.4. For k>0 andl >0

Qr+i+2(T0s - -+ Tk Y0, - -+ Y1)

= Qr+1(20,- -, 21)Qu41(Yo, - - - Y1) + Qr(@o, -, Tk—1)Qu(Y1, - -, u1).

PROOF. Let us think of Euler’s alternative definition of the -polynomials
(see Theorem 1B.2). Then the Q-polynomial Qyyi42(Zo,--- s Tk, Yo,--- , Y1)
is obtained by adding up all possible terms produced by starting with the
product

1-@o- Tk Yoy

and omitting zero or more nonoverlapping pairs of consecutive variables.
The Q-polynomial Qg+i+2(xo,--- , Tk, Yo,--- ,y) has two kinds of terms:

1. The terms where the pair zpyo is not omitted and the part of the
Q-polynomial that contains these can be factored as

Qr+1(zos -, 2k)Qi1(Yo, - -+ Y1)

2. The terms where the pair xyyo is omitted and the part of the Q-
polynomial that contains these can be factored as

Qr(wo, -, xk—1)Qu(y1,- .. Y1) B
THEOREM 1B.5. For2 <n < N,

/.’E07$1,... ,CL’N/
[ may e wn/  Qul(@o, - Tn—1) + Qu-1(T0, - - - Tpn—2)
[Tny oo yaN] Quo1(T1,. oy Tn1) + Qn-2(21,.. . ,2p—2)

ProOF. Using Theorem 1A.8 we compute:

/.T(] T J;N/ = QNJFI(.TO"Tl"'. 7xN)
’ B QN(Z’l,ZL’Q,...,.’EN)
_ Qn(x()a e 7xn71)QN7n+1(xna e 7$N) + anl(x()a e 7xn72)Qan(xn+1a .- 7$N)
Qu-1(z1,. . ;20 1)QN-nt1(Zny -, TN) + Qu2(®1,. .., T 2)QN-n(Tni1,-.. ,TN)

(by Theorem 1B.4, with k=n—-1,1=N —n)

QN—n-‘rl(xn? s 7mN)

. Qn(.’IJQ, R ,ZL’n_1) + Qn_l(.’Eo, . ,ZL’n_g)
QON-n(Tnt1,..-,TN)

B QN*’TH’l(J"TH"' 7$N)
QN-—n(Znt1,-.-,2N)

) anl(flfly B ,.%’n,l) + Qn72($17 .- 75L'n72)
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. /xny ce. a'TN/ . Qn(a:()y cee axnfl) + anl(x()v cee 7xn72)
[Zny oo yEN] Qno1(x1, o 1) + Qn-2(21,... ,Zp_2)
(by Theorem 1A.8.) o

1C. From @Q-polynomials to continued fractions

Most often we are not interested in studying a continued fraction as a

formula in the variables zi,...,xz,, but rather as the representation of
a real (or complex) number. Then we will agree to denote the partial
quotients by a1, ... , a, in order to indicate that we have to do with numbers

instead of variables. We also define the sequences p,,, g, as follows:

DEerINITION 1C.1. For every sequence of integeres ag,ai,... ,an such
that 0 <n < N let:

Pn = Qn+1(ao, A1y ,an)

Gn = Qnlai,as,... ,a,).

We call 22 the n-th principal convergent, or just convergent of the
an
continued fraction /ao, ... ,an/.

These are the convergents of the continued fraction. It is also convenient
to define some additional terms:

p—2=0, pa1=1 ¢qga2=1 ¢1=0, @=L
From Theorem 1A.8:
Dn

/a0, a1, ..., an/ = =—, (n < N).
an

It is now very easy to use the general results about Q-polynomials to get
results about the sequences p, and g, (see Definition 1C.1) and the con-
tinued fraction /ai,...,a,/. This approach is common with [7] and [11]
while all other books in the references do not define the Q-polynomials
but start from defining directly the sequences p,, and g,. However study-
ing the Q-polynomials gives us a better overall picture, not to mention
that they themselves are really interesting mathematical objects thinking
of Theorem 1A.5 and the relation to the Fibonacci numbers.

THEOREM 1C.2. Forn >0, and p,, q, as in Definition 1C.1,

(25) Po = ap, Pn = QpPn—1 + Pn-2,
(26) qo = 17 n = @nGn—1 + qn-2,
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(27) Prn—1 — Pn—1dn = (—1)" 71,
(28) Pn Pn-1 _ (—1)”_1’
Gn  Gn-1  Gn-1Gn
(29) Pnn—2 — Pn—2qn = (—1)"ay,
(30) Pn_ Pn-2 _ (=D)"an

dn qn—2 gn—24n

PROOF. One sees immediately that the preceding results about Q- poly-
nomials guarantee that these three corollaries are true. In more detail, (25)
and (26) follow from (24), while (27) and (28) follow from Theorem 1B.2.
Finally (30) and (29) follow from Theorem 1B.3. The cases for 0 <n < 2
are trivial to check. -

COROLLARY 1C.3. Ifther,’s are defined by (22), then for2 <n < N,

_ Dn _ TnPn—1 +pn—2
Jag, ... ap) = P = TnPn=t F P2
dn TnQn—1 + Gn—2

ProoF. First, by Theorem 1A.8 and Definition 1C.1 we get
Pn

q?z/a07"' 7an/'

Then by Theorem 1B.5 and Definition 1C.1,
& _ TnPn—1 +pn—2

dn B TnGn—1 + Gn—2 . -
THEOREM 1C.4. Forn > 1,
1 1 1 —1)nt
Jao,a1, ... ,an/ =ao+ — + —...—|—L
qoq1  q192 9293 dn—19n
n
—1 k—1
TP S =iy
i1 Te—14k
Proor. By (28),
zn: (=Dt _ Z (@ B pk—l) _ zn:@ B zn:pk—1
i1 Qe—14k = & Gk Pl O
n n—1
-y Pt N~Pr _Pn_ PO
- - )
h—1 Gk k=0 Gk n qo
so we have
n
(=D*' po _ (Pn D0\ _ Pn
ag + 7=—+(———):—:a0a1...a .
Z Qk—19k q0 an 9o an fao, @i, an/ =

k=1
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1D. Simple continued fractions

DEFINITION 1D.1. A continued fraction /ag,a1,...,an/ is simple if
ao, - .. ,ay are integers and
ap > 0,a1 >0,...,a, > 0.

We will make this assumption for the rest of the remainder of this chapter.
THEOREM 1D.2. Forn > 2, g, > qn—1, and forn > 1, g, > qp—1.
THEOREM 1D.3. Forn > 3, g, > n and forn > 1, g, > n.

PROOF is by induction on n:
w=1<q=a<qg=aa+1
gr=a12>1, g=aa+12>2
and for n > 3
In = AnGn—1 + Gn—2 > gn—1 + 1,
so that by the induction hypothesis ¢, > ¢,—1 and ¢, > n. =

THEOREM 1D.4. Forn >0, Qni1(ag,a1,... ,a,) and Qn(ai,as, ... ,ay,)
are relatively prime integers.

In view of Definition 1C.1, this just says that (py,¢n) = 1.
PROOF. We use the notation of Definition 1C.1, p,, = Qn+1(ao,.-. ,an),
Gn = Qula,... ay), 80

(Prs @n) | Pry (P @) | s
by equation (27) we get that:
(pnaQn) |ann71 — Pn—149n = (_1)71,—1 = (pn:Qn) ‘ 1
= (pn7Qn) =1 =

The following theorem shows that the ¢,,’s grow exponentially in n. For
more on the growth of the ¢,’s one can refer to [10].

THEOREM 1D.5 ( [5]). For alln >2, g, >2"7 .
ProOOF. For n > 2,
In = @nGn—1+ qn—2 2 n—-1 + gn—2 = 2¢n—2.
Successive application of the inequality yields
Q2n > 2"qo = 2", Gnt1 = 2"q > 27,

which proves the theorem. -
Thus the denominators of the convergents increase at least exponentially.
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THEOREM 1D.6. Every odd convergent is greater than any even conver-
gent.

PRroOOF. By (28),

Pt _ P (2D > 0.
q2n+1 q2n g2nq92n+1

So
P2n+1 > Pan

q2n+1 q2n ’ n

THEOREM 1D.7. The n-th principal convergents, for even n, form a
strictly increasing sequence and the n-th principal convergents, for odd n,
form a strictly decreasing sequence, that is

Po P2 Pa o P2mo
do q2 44 a2m
<.obil o B B P
@2n+1 a5 a3 q
Proor. By (30) we have that
Pont2 _ P2n _ (=1)***a, >0, so Ptz P
@2n+2  q2n q2nq2n+2 q2n+2 q2n

And similarly that

P2n+1 Pon-—1 <0 P2n+1 < Pn—1 gy
q2n+1 q2n—1 q2n+1 g2n—1

We observe that:

(31) [ao,a1,...,an, 1/ = Jag,a1,...,a, + 1/.

REMARK 1D.8. A number is representable by a simple continued fraction
with an even number of convergents if and only if it is representable by one
with an odd number of convergents.

It is often useful to choose one of the two alternative representations in
order to simplify proofs and omit superfluous cases.
Recall how we defined the mth complete quotient r,, in Definition 1A.3.

THEOREM 1D.9. Forn < N, a, = |r], except that ay—1 = |rn—1,]—1
when the last partial quotient, ay = 1.

ProoF. If N =0, then obviously ag =79 = |ro]. If N > 0, then

anN — /CLN/ =TrN = I_TNJ.
Now suppose 0 <n < N — 1. We have

(32) Tn = Qp =+ )
Tn+1
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Case 1: If n=N —1 and ay =1 then
TN—1=an-1+— =an_1+1,
an
hence ay_1 = [ry-1] — 1.

Case 2: Otherwise r,11 > 1, because either n = N —1 and ay > 1, so
that

a1 =7Nn = Jan/ =an > 1,

> 1.

orn+1<N and rp11 = apt1 +

So by (32) we have that

T'n42

1
an<rn:an+7<an+]—7
T'n+1

which means that a,, = |ry]. =

THEOREM 1D.10 ( [3]). If two simple continued fractions [ag, a1, ...,an/
and /bo, b1, ...;bpr/ have the same velue x andan > 1, by > 1 then M = N
and the fractions are identical, i.e. they are formed by the same sequence
of partial quotients.

PROOF. Suppose without loss of the generality that N < M.

We will prove by induction on n < N that a, = b,, and then, by
contradiction, that N = M.

For n = 0, we have agp = |z] = bp by Theorem 1D.9, as ay > 1.

For n =1,

1 1
—— =bo+ —.
(r1)a (r1)e
(Where (7)), is the n-th complete quotient of the continued fraction a.)
And as

ao +

ag =byp = ||, wehave (r1), = (r1),

Applying once more Theorem 1D.9 to (r1)., (r1)p we obtain a; = by.
Assume now that n > 2 and the result holds for i < n — 1. By Corol-
lary 1C.3 we have,

(rn)apnfl + Pn—2 — = (rn)bpnfl + Pn—2
(rn)aqn—l + dn—2 (rn)bqn—l + gn—2 ’

and by cross multiplying we obtain

((rn)a - (Tn)b)(pn—l(bz—z —pn_zqn_l) = 0.

But pp_1gn—2 — pn—2dn—1 = (—=1)™ # 0, by (27), and so (r,)a = (rn)p. It
follows from Theorem 1D.9, that a,, = b,,. So for all n < N, a,, = b,.
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If M > N, then
Py (rn+1)sPN + DN-1
— = /AQ,-..-- , AN/ = ao,...,aN,bN 1,...,bM = s
am / /=1 * / (rve1)saN + an—1
80 pngn—1 — Pn—19gny = 0 and by Corollary 1C.3 we have arrived at a
contradiction. Hence N = M and the fractions are identical. -

REMARK 1D.11. Using (31), we can see that the preceding uniqueness
Theorem also holds in the case when ay = 1,by = 1.

1E. How close is a continued fraction to its convergents?

As before a; > 0fori >0,z = /ag,... ,an/, rn = [an,-.. ;an/.
THEOREM 1E.1. If 1 <n < N —1, then
O Gl

G @1

where ¢, is defined by the following recursion:

q/1 =T
(33) q;, = Tnqn-1 + gn—2, fOT' 1<n S N.
(Notice that in particular ¢y = qn.)
PRrROOF. In the base case
Po 1 1 1
x = —-
qo0 r1 qor1 qody
Suppose that N > 1 and n > 0. By (1C.3),for 1 <n < N —1,
_ Tn+1Pn + Pn—1
Tn+14n + qn—1
Consequently
Tz — @ _ Pndn—-1 — Pn—1qn __ (_l)n

dn Qn(rn-‘rlqn + qn—l) N Qn(rn+1qn + Qn—l) ’ -

THEOREM 1E.2. If N > 1,n > 0, then the differences

Pn
r— —), gnT — Pn
an
decrease steadily in absolute value as n increases. Also
—1)"4
(34) gn® — Pn = M7
In+1

where

O<6n<1, fOT 1§n§N72, 6N—1:1
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and

1 1
<3
An dndn+1 An

(35)

forn < N — 1 with strict inequality in both places except when n =N — 1.

PROOF. Suppose n < N — 2. As we saw in the proof of Theorem 1D.9
we have

(36) an+1 < Tpy1 < apy1 + 1,
while
an—1 <ry-1<an_1+1,

where the equality holds when ay = 1. Now using this we get the following
two inequalities for n > 1:

(37) Q;LH =Tn+1Gn + Gn+1 > Gn+1qn + gn—1

(38) q’;],-‘rl =Tp+1qn t gnt1 < (an-‘rl + 1)qn + Qn—1
= (@n+10n + @n-1) + @0 = Gnt1 + @ < Gnp2nr1 + @n = Gnt2

For the second inequality we have used that ry_1 < ay—1 + 1, which does
not hold in the case any = 1, when we have the same with equality instead:

(39) gn-1 = (an—1+1)gn—2+qN—3 = qn-1 + qN—2 = qN.
Moreover,

gr=a1<ri1<a1+1<aq+q = q.
From (37), (38) and Theorem 1E.1 it follows that

1 1
(40) < |pn — qnz| < , for 1<n<N-2
An+2 In+1
while by (39) and z = N
qN
1
(41) lpv—1 —gn—12] = e and py —gnz =0

In either case (40) and (41) show that
P
an

|pn *qn$|, ‘ZL‘

decrease steadily as n increases, since ¢, increases steadily. a
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1F. Infinite simple continued fractions

In this section we are going to define infinite simple continued fractions.
These have finite continued fractions as their initial segments. We will
essentially follow [3]. For more facts about intermediate fractions one can
see [5] and [11].

DEFINITION 1F.1. Suppose that ag, aq,as, ... is an infinite sequence of
integers with a3 > 0,a2 > 0,.... Then z,, = /ag, a1, ... ,a,/ is for every n,
a simple continued fraction representing a rational number z,,. If x,, tends
to a limit x when n — oo then we say that the infinite simple continued
fraction [ag,a1,az,.../ converges to the value x and we write

x = /ag,a1,az,.../.

THEOREM 1F.2. All infinite simple continued fractions are convergent.

Consequently, for even n, the n-th principal convergents of an infinite
continued fraction form a strictly increasing sequence converging to x. For
odd n, the n-th principal convergents of a form a strictly decreasing se-

quence converging to x. That is if ¢ = [ag,a1,.../ then:
Po P2 BBl B P
q0 q2 q2m d2n+1 qs q1
lim D2n — lim p2n+1.
n—oo q2n n—oo q2n+1

One should notice this is a strengthening of Theorems 1D.7 and 1D.6.

ProoOF. We write
_Pn

T, =— = /ap,01,-... 0,/

dn
and we call z,, the n-th convergent to /ag,a1,as,.../. By Theorems 1D.7
and 1D.6 the even convergents form an increasing and the odd convergents
a decreasing sequence and for all n > 0,

o <x2<...<ZTop <...<2q, To < < Topy1 < ...<x3<T1.

That is the increasing sequence of even convergents is bounded above by
z1 and the decreasing sequence of odd convergents is bounded below by z.
Hence the two series converge, say to the limits &, &2 respectively. Then
by Theorem 1D.6,

lim 22 — ¢ <& = lim 22241
n—00 (2n n=00 ¢2n41
Finally by (28) and Theorem 1D.3 we have

|@ _ P2n—1 | < 1 < 1
Q2n  Q2n—1 GonGon—1  2n(2n —1)

— 0,
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and so & = & = z and so the fraction /ag,a1,as, .../ converges to . B

DEFINTTION 1F.3. For any positive integer r with 1 <r < a,1 we call
the fraction
DnT + Pn—-1
An?” + @n—1

an intermediate fraction.

DEFINITION 1F.4. The mediant of two fractions %and 5, with positive
denominator, is the fraction
a+c
b+d

LeMMA 1F.5. The mediant of two fractions always lies between them in
value.

PROOF. Suppose without loss of generality, that % < 2, in which case
bc — ad > 0 and consequently
atc a _bc—ad
b+d b bb+d)
a+c_E: ad — bc <0
b+d d bb+d) — 4
THEOREM 1F.6. If x = /ag,aa,.../ then the sequence
Pn-1 Pn+Pn-1 2Pp + Pn_1 An+1Pn + Pn—1 _ Pn+1
-1 Gn + -1 2qn + qn-1’ ’ Gn+1qn T qn—1 dn+1

is monotone: increasing for odd n and decreasing for even n.

PROOF. It is easy to verify that:
Pa(r+ 1) +pa-1  par +pu—1 (=1"+!

QTL(T + 1) + gn-1 qn" + qn-1 B [qn(r + 1) + anl][Qnr + (anl] .
So for r > 0 we have that
p2n(r + 1) + Pan—1 Pan? + P2n—1

@n(r+1)+gm-1  @nr + @1

Pant1(r +1) +pon _ pant1r +D2n
q2n+1(r + 1) + q2n q2n+17T + q2n
It follows that the sequence

Pn-1 PntPn-1 2Pp + Pn_1 Ap+1Pn + Pn—1 _ Pn+1
qn—1 ’ dn + gn—1 ’ 2qn + dn—1 ’ ’ An+14n + gn—1 qn+1

(42)
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is monotone: increasing for odd n and decreasing for even n, (just as in
the proof of Theorem 1D.7). Notice that the first and the last term of the
sequence are both even- or both odd-order convergents.

The intervening terms (if there are any, that is, if a,,+1 > 1), the interme-
diate fractions play an important role (though this role is not as important
as the convergents’ role).

Each of the intermediate fractions in the progression of (42) is the me-

diant of its preceding fraction and the fraction @.

4n
Now the value x of the continued fraction lies between P and M,
dn qn+1
and the fractions 22=% and an’ which are either both of odd or both of
Gn—-1 an+1
even order, lie on the same side of z and the fraction P lies on the other
an
. . . + Pn— .
side. In particular, the fractions Pn T Pn—1 and P are always on opposite
dn T dn-1 dn
sides of z. So that the sequence
Pn—1 DPn + Pn-1 2pn +pn—1 An+1Pn +pn—1 _ Pn+1
-1 Gn+ -1 2qn + Gn1’ " Gn1Gn F -1 Gntr
is monotone. —

REMARK 1F.7. Notice that a,+1 is the largest positive integer r for
and Pn—1 + TPn

dn—1 Gn—1 + rdn

h Pn—-1

whic are on the same side of z.

1G. Continued fractions and the Euclidean algorithm

In this section we will denote the ordered pair with first element z and
second element y by {z,y}.

THEOREM 1G.1 (Division Theorem for natural numbers). If z >y > 0
and z,y € N, then there exist unique numbers ¢ € N and v € N such that

z=yqg+v and 0<v<y.
We denote the remainder v of this division by rem(z,vy).

THEOREM 1G.2 (Division Theorem for reals, with ¢ € N). If x >y > 0
and z,y € R, then there exist unique numbers ¢ € N and v € R such that

z=yqg+v and 0<v <y.

Moreover,

(43) 0=17)
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We denote the remainder v of this division by rem(x,y).

DEFINITION 1G.3. Let z,y be two natural numbers. We say that y di-
vides z and we write y | z, if and only rem(z,y) = 0, and we denote the
greatest common divisor of two natural numbers z,y by (z,y).

Continued fraction algorithm. To each real number x we assign two
finite or infinite sequences ag,aq,... of integers and &y, &;1,... of reals as
follows:

1. Let ag = [z|, & =2 — ao.

2. If ag, ... ,an,&,...,&, are defined, and &, # 0, then let
1 1

an4+1 = L?nJa Ent1 = g — Qn+41
3. If &, = 0 then the algorithm terminates and returns ag,as, ... ,a,
and &], . 7€n~
REMARK 1G.4. Note that the algorithm also returns the complete quo-
tients r, = /an,... ,an/ of z, since for &,, # 0,
1
Tm = 6

Let us see what the algorithm does. While &,, # 0, this definition guar-
1
antees that 0 < &,41 < 1 so that ap41 = L—J is a positive integer strictly

&n
greater than 1.

If £, = 0 then the quantities a, 1 and &,11 are not defined and the algo-
rithm stops, returning the sequence ag, aq, ... , a, so the continued fraction
for z is /ag, a1, ... ,a,/ and z is a rational number.

The picture becomes clearer when we write down the first three steps of
the algorithm:

T=ag+ & =ag+ =Qqy+ —m=....

a1+ &1 N 1
a
! az + &2

THEOREM 1G.5. Forn >0, and a,,§&, > 0 assigned to x by the contin-
ued fraction algorithm,

x=/ag,... ,an+&/.
PROOF is by induction. For n =0,
T =ao+& = [ao+ &/,
and if we suppose that

$:/a0,.-. 7an+£n/7
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we get that. if &, # 0,

T =/ag,... ,an+&/ (ind. hyp.)
1
= /ag, ... ,an,f—/ (by (23))
1
= /ao, R A s T | +€n+1/ (fnJrl = g— — an+1). 4

THEOREM 1G.6 (Correctness of the continued fraction algorithm). For
the sequence ag,ai,... ,a, assigned to x by the continued fraction algo-
rithm, we have that:

(a) If x is rational then the algorithm terminates with En = 0 for some
N >0, and z = /ao, ... ,an/, (withay > 1 if N #0).

(b) If x is irrational, then &, # 0 for all n, thus the algorithm does not
terminate, and

x = lim /ag,a1,...,a,/.
n—oo

Proo¥r. (a) If the algorithm terminates and &, = 0, then N = n and
x = [ag,...,an/. As the continued fraction is finite it is also immediate
that z is rational.

1
(b) Otherwise &, # 0 for all n > 0 as = = rp, by Theorem 1G.5 we

n
have

1
|z — Jag,a1,... ,an/| =1/a0,a1,... ,anJrr—/f/ao,al,... yan /|
n
=|/ag,a1,... ,an, 0/ — [ag,a1,... ,a,/]
(by (23))

Tn+1Pn + Pn—1 _ Pn
Tn+1qn + Gn-1 an
(by Corollary 1C.3)
Pndn—1 — Pn—14n
qn(rn+IQn + anl)
_ (=" ‘
qn(rn-i-lqn + qn—l)

]

Gn(Tn+1n + @n—1) !’

and this gives

lim /ag,a1,...,a,/ = . 4

n—oo
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If we use the formulas the continued fraction algorithm above to compute
the continued fractions of some familiar real numbers we get:

423

=0 = 1,1,2,2,1.4

720 /7 5 Ly Ly Ly /7
m=/3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,... /,
e=/2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,... /,
¢=/1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... /,

) 7 ) ? ?

1+5

where ¢ = .
¢ 2

THEOREM 1G.7. Any rational number = can be represented as a finite
continued fraction. Moreover this representation is unique if we demand

that any > 1.

Proor. By Theorem 1G.6 we have a finite continued fraction represen-
tation of x. By Theorem 1D.10 we get the uniqueness. -

We will now state the Euclidean algorithm and see the way the continued
fraction algorithm can be stated as a special case of the Euclidean for
z,y € R

Euclidean algorithm. To each pair of real numbers {z,y} such that
z > y > 0 we assign two finite or infinite sequences ai,as,as,... and
v_1,v0,V1,Vs,... as follows:

1. Let vo1 =2, v9 =y

2. fwv_q,...,v;,a1,...,a; are defined and v; # 0 then, by the division
Theorem, choose v; 11, a;4+1 such that

Vi—1 = Viai+1 + Vi1 0 <wig1 < ;.
3. If v; = 0 then the algorithm terminates and returns v_1,vo, ... ,vi—1
and Al,y... ,05.

The Euclidean algorithm works for the pair {z,y} as follows:

r=ya+uv 0<v <y
Yy =viaz + U2 0< vy <y
U1 = Ugas + U3 0 < w3y <wg

Up—3 =Upn—20p_1+Up_1 0<vp_1 <vp_2
Up—2 = Up—10p, v, = 0.
If z,y are positive integers, then we know that the algorithm terminates

because the division remainders form a strictly decreasing sequence of pos-
itive integers, so for some n € N it will be v,+1 = 0. If however z,y
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are reals, it can be the case that the algorithm does not terminate, so all
remainders are greater than zero.

Moreover if x,y are positive integers, we have that the last positive re-
mainder v;_; is equal to the greatest common divisor of z and y. This is
based on the following simple observation: if

r=yq+v with 0<v <y,
then the pairs {z,y} and {y, v} have exactly the same common divisors.

THEOREM 1G.8. (a) If we execute the Euclidean algorithm for the pair
{z,1} then x = [a1,... ,an,...[ where ag,... ,ay,... are the quotients in
the Euclidean algorithm.

(b) If x = % with h > k, it is equivalent to perform the Euclidean
algorithm to the pair {h,k}.
Proor. (a) The division equation for the pair {z,1} is
r=1-a0+v1, 0<v; <1 (ap=|z])

1

l=wvia; +v2, 0< vy <1y (Cll:LU*J)
1
U1

vy =voag +v3, 0<v3 < (GQZ ;)
2

Un—1
Un—1 = Unln +Un+170 < Un+1 < Up (an = I_ - J)

Un
We can now construct the continued fraction for x:
1
z=1l-ap+vi=a+—=a+———=0qao+
1 V141 + U2 1
U1 U1 V1
V2
Up—1
=...=aq+———=a+ ———=/ap,01,... ,an, /.
1 al =+ . 1 Un
as + — o
v1 Un—1
U2 Un
Unp—1

By an easy induction on n, using that a,+1 = |

|, we can prove that
n

Un

gn:

Un—1
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So correctness follows from Theorem 1G.6.

(b) We observe that the quotients that appear in the Euclidean algorithm
applied to the pair {h, k} are the same as the quotients that appear in the
Euclidean algorithm applied to the pair {z, 1}, because if we multiply each
division equation that appears in the Euclidean algorithm for {z, 1} we get
exactly the divisions that appear in the Euclidean algorithm for {h, k}. -

Notice the reason why the a,s are called partial quotients: they coincide
with quotients that appear in the Euclidean algorithm applied to the pair
{z,1}.

The representation determined by the continued fraction algorithm gives
us the ability to represent a real number with the degree of accuracy we
choose, according to the length of the continued fraction. The other system
of representation, we use for real numbers, is that of decimal numbers or
of systematic fractions (that is, fractions constructed according to some
system of calculation). In chapter 1J we will show that the approximating
values given by continued fractions have the property of being best ap-
proximations of the numbers, which is of great significance for theoretical
investigations. However continued fractions turn out to be a very imprac-
tical representation for performing arithmetical operations (see Hurwitz
1891).

1H. Equivalent numbers

This definition of equivalence between numbers is closely and beautifully
connected with the continued fraction algorithm because the operation in
each step is such that we remain in the same equivalence class. The pre-
sentation here follows [3], [5], [8] and [10]. The latter two present also the
algebraic point of view.

DEFINITION 1H.1. If £, 5 are two real numbers such that
an+>b
g=2
cn+d
where a,b,c,d are integers such that ad — bc = £1, then & is said to be
equivalent to 7.

The relation we define this way is indeed an equivalence relation:

£+0
REFLEXIVE: ¢ = .
¢ On+1
SYMMETRIC: If £ is equivalent to 7 then:
an+b —d{+Db

=

d= b —an=b—¢&d =
cn+d=>£cn+£ an+b=gen —an d=n & —a

and also (—d)(—a) — bc = ad — be = £1 and so 7 is equivalent to &.
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TRANSITIVE: Suppose & is equivalent to n and 7 is equivalent to (.
Then:

b
e=YF0 e =1
cn+d
ag¢+y ., ’ s
= — =+1.
n c’C—i—d’ad be

So substituting #» in the first equation by it’s expression in terms of { we
get:
= AC+ B

- CC+ D’

where

A =ad +bc, B =ab' +bd, C =ca +dd, D=ct +dd

AD — BC = (ad — be)(a'd = b'd) = +1
THEOREM 1H.2. Any two rational numbers are equivalent.

PROOF. Every rational number can be expressed in the form % where
h, k are coprime integers. Then as (h,k) = 1 there exist natural numbers
h', k' such that:

hk' —h'E=1
SO

h RK-0+4+h

k- K-0+k
We get that every rational is equivalent to 0, but also to any other rational,
since our relation is transitive. n

There is a correspondence between matrices
a b
c d

ax
with determinant +1 and transformations In fact

+b
+d

@)= ()

The set of all such matrices (/transformations) with integral components
is a group under matrix multiplication (/composition of transformations),
for the product of two such matrices and the inverse of such a matrix again
have determinant £1, so the product of any two elements of the group stays
in the group.
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If 0 € G we define for any number z:
azr +b
T td
Then if 0,7 € G and [ is the identity matrix,

o(tz) = (om)x and Iz =z.

Thus G operates on the set of numbers and two numbers £, n are equivalent
if there exists ¢ € G such that ¢& = .

DerFINITION 1H.3. If # = /ag,a1,.../ is an infinite simple continued
fraction with convergents p,, g,, we let

o1 = <pn1 pn2) )
n—-1 {n-2
We call g,_1 the (n — 1)-th continued fraction transformation of z.

The determinant of the matrix is £1 because pp—1¢n—2 — Pn—2@n—1 =
(=1)"2, by (27).

THEOREM 1H.4. Let x be any irrational number with
x = [ag,a1,... ,apn-1,"n/,
where ry, is the n-th complete quotient of x, that is
Tn = /Gn, Qnit,-.. /-
Then x is equivalent to v, for n > 1.

Proor. By Corollary 1C.3,
= /aO a1 r / _ Pn—1Tn + Pn—2
? ’ »'n qn_lrn + qn_2 3

so that © = 0,,_17,. Thus z is equivalent to r,, for n > 1 and consequently
all complete quotients of x are equivalent to each other. a

a, 1

then det(A,) = —1 and by induction on n using (25),
on = AgAy - Ap.

Furthermore if we let

We see that this is a decomposition of the transformation o, to each of
the n steps of the equivalent continued fraction transformation.

Notice also the similarity of this decomposition to the one of Theo-
rem 1B.1.
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THEOREM 1H.5. If
_ PC+R
TR+ s
where ( > 1 and P,Q, R and S are integers such that

Q>S>0, PS—QR==l,

then there exists some n > 0 such that

R:pn—l E:& and € =Tni1
S guo1’ Q gn "

In particular, % and g are successive convergents to the simple continued

fraction with value x.

PROOF. We develop P/Q in the continued fraction representation for
rationals,

(44) g:%:/ao,...,an/.

As we have seen in Remark 1D.8 we can have n odd or even, as we please.
So we choose n such that

(45) PS—QR=(-1)"""

The hypothesis PS — QR = +1 implies that (P,Q) = 1 and @ > 0 and
by (27) and Theorem 1D.4 it is also

Pndn—1 — Pn—14n = (_1)n71’
(pny(In) =1and Pn > 0. Hence P = Pn> Q ={(qn and
PnS — gl =PS - QR = (_1)n_1 = Pnqn—-1 — Pn—1qn,
so that
pn(S - anl) = Qn(R _pnfl)-
S0 ¢ | Pr(S — qn—1). But since (py, ¢,) = 1 it must be that
dn ‘ (S _anl)-
But
q'n:Q>S>0a Gn = qn—1 >0,
and so
|S - qn—1| < qn-
It follows that ¢, can’t divide (S — ¢,—1) unless it is zero. So

S:qn—la R:pn—l
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and
_ pnC + Pn—1
po= > el
qnC + qn-1
which means that
x = /ag,...,an, (/.

Developing ¢ as a simple continued fraction, { = /ap41,ant2,. ../ we come
to the simple continued fraction representation of z,

T = /00,01, .. yQnyAnt1, Gpt2,--- /.
We have proved that,
Pn—1 P _ ]ﬁ

gn—1 Q dn

B _
5=
and

C:TnJrl- _|

THEOREM 1H.6. Two irrational numbers € and n are equivalent if and
only if for suitable ag,a1,... ,0m,b0,b1,...,b, and co,c1,... we have,

(46) fz/ao,al,...,am,co,cl,.../ n:/b(),bl,...,bn,C(),Cl,.../.
PROOF. Suppose ¢ and 7 are as in (46) and let w = /co,¢1,.../. Then

pmw"'_pmfl

= lag,a1,... ,0m,w/ = ———m———
§=/ mo 0/ Gm—1W + Gm—1
but also

Pmm—1 — Pm—19m = :l:la

so £ and w are equivalent. Exactly the same argument shows that 1 and w
are equivalent, and so by transitivity & and 5 are equivalent. Conversely if
¢ and 77 are two equivalent numbers, then

al+b
= ad — be = £1.
"=t d
We may suppose c€ +d > 0, since otherwise we may replace the coefficients
by their negatives. When we develop £ by the continued fraction algorithm,

we obtain for any k,

Pk—1Tk + Pr—2
f: ap,a1y-.. ,Q,Ak+1y---/ = /Q0,A1,... , Ak —1,Tk/ = ————————.
/ /=1 / Qk—1Tk + gr—2
Replacing ¢ by this expression in 77, we get

N P Tk + R

n_Qrk+S7
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where

P = apg—1 + bpg—1, R = apy—2 + bpg—2

Q = cpr—1 + dpi—1, S = cpr—2 + dpg—2
with

PS — QR = (ad — bc)(pr—1qr—2 — Pr—2qr—1) = £1.
By (34) we can write

o
pr—1 = Eqx—1 + ——,where |§] < 1
dk—1

!

)
Pr—2 = &q—2 + ——,where [§'| < 1.
qrk—2
Hence
1) cd'
)

Q= (€ +d)gr—1+ S=(ct+dgr—2+ .
qr—1 qr—2

Now c§ +d >0, gy—1 > qr—2 > 0 and g;—1, gr—2 tend to infinity, so that
Q>85>0
for sufficiently large k. For such k
P(+R
n= QC+S’

where
PS—QR=41, @>S5>0, (=rp>1
and so by the previous theorem,
n=/bo,b1,...,b,(/ = /bo,b1,... b, ar,apt1,.../
for some bg, b1,... ,b;. a

1I. Periodic continued fractions

The proofs here follow [3] and [5] (there are only minor differences be-
tween the proofs in the two books).

DEFINITION 1I.1. A periodic continued fraction is an infinite continued
fraction in which a; = a;4 for a fixed positive k and alll > L. The sequence
of partial quotients ar,ar4+1,... ,ar4+k—1 is called the period, and we write
/ao,a1,.../ = [ag,a1,...,8L,---,6L+%/ in analogy to the notation for
decimal fractions.

THEOREM 11.2. A periodic continued fraction is a quadratic irrational,
i.e. an irrational root of a quadratic equation with integral coefficients.
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ProoOF. Obviously the remainders of the periodic continued fraction sat-
isfy the relationship:

Titk = T, 1> L.
So we have
o = Pom +Pi—2 _ Prik—1Ti+k T Pitk—2 _ Plak—1T1 + Prik—2
Q171 T Q-2 Q+k—171 + Qvr—2 Qtk—171 T Q4k—2
so that

Di—1Ty tPi—2  Pi4k—1T1 + Pi4k—2

Qv+ q-2 Gk Gek-2
As pi1qivk—1 — @—1pi+k—1 # 0 (by Theorem 1D.6), the number r; satis-
fies a quadratic equation with integer coefficients and consequently is an
irrational number. But

Pi—17T1 + pr—2 Di—2 — Q20
a=—"" g0 rp=——"-—"
Q171 + Q12 gI—10+qi—1
and if we substitute r; in the previous quadratic equation, and clear of
fractions, we get that a satisfies an equation

(47) az® +bx + ¢ = 0.
And since « is irrational, b2 — 4ac # 0. (If b> — 4ac = 0 then the double
root of the equation would be ;—f 0 a rational number.) -

The converse of the theorem is also true. The proof is a bit more difficult
but also more interesting.

THEOREM 11.3. The continued fraction which represents a quadratic ir-
rational is periodic.

PROOF. Suppose «a satisfies the quadratic equation with integer coeffi-
cients and ¢ > 0

(48) ac® +ba+c=0.
Considering the continued fraction representation of a we can write
o= Pn—1Tn —|—pn_2.
Gn—-1Tn T Gn-2
And if we substitute o in aa? + ba + ¢ = 0 we obtain
(49) Apr2 4 Byprp + Cp = 0,
where
A, = api_l + bpp—1gn-1+ quz,—la
By, = 2app—1pn—2 + b(Pr—1qn-1 + Pn—2¢n-1) + 2¢¢n—1qn—2,
Cn=app_o +bpp—on_2+cq;_o = An_1.
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If A, = ap2_; + bpp—1qn-1 + cq>_; = 0, then the quadratic equation
but this is

Pn—1

ao?® + ba + ¢ = 0 has a unique rational root namely
dn—1
impossible as « is irrational. Hence 4,, # 0 and

Any2 +By+Cp=0

is an equation one of whose roots is r,. It can be proved by induction on
n that:

Bn2 - 4Ancn = (b2 - 4ac)(pn—1Qn—2 - qn—lpn—2)2 = b2 — 4ac.

That is, the discriminant of 4,y? + B,y + C,, = 0 is the same as that of
ay® + by + ¢ = 0. Furthermore since

_ 1
)a_pn 1’< 5

gn—1 gn—1
it follows that
Op—
Pn—1=Qgn_1+ — ! |01 < 1.
dn—1
Therefore
1.2 O
An = a(aqnfl + B 1) + b(Oéanl + ol )anl + quzlfl
n—1 dn—1
= (a0® 4 ba + ¢)¢> _; + 2aad, 1 + aq”_ + 00,1
n—1
So we have
2 2 64
|4, | = |(ac® + ba + ¢)q;;_1 + 2a06,,—1 +aq + b1
n—1

< 2|ac| + |a| + |b],
|Cnl = |Ap—1] < 2|ac| + |a| + [b]-

Finally
B,% < 4A,C, + |b* — dac| < 4(2]ac| + |a| + |b]))* + [b? — 4ac|.

Hence the coefficients of the quadratic equation A,,y? + B,y + C,, = 0 are
all bounded in absolute value (a, b, ¢ are independent of ) and hence there
are only a finite number of distinct values, as n varies. But in any case ry,
can only take a finite number of distinct values, and therefore, for properly
chosen [ and &,

Tr =Ti+k

So the continued fraction representing « is periodic. -
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No proofs analogous to this are known for continued fractions represent-
ing algebraic irrational numbers of higher degrees. In general, all that is
known concerning the approximation of algebraic numbers of higher degrees
by rational fractions amounts to Liouville’s Theorem and certain proposi-
tions strengthening it (see [5]).

1J. Convergents as best approximations

In this section we will follow [5]. In fact, in [5] there can be found
many more facts, than the ones presented here and maybe this is the most
interesting and well-written part of the book. Some of the facts are also
covered in [3].

a
DErFINTTION 1J.1. A fraction -, for b > 0 is called a best approxima-

tion of the first kind of a real number z if every other rational fraction
with the same or smaller denominator differs from x by a greater amount,
that is, if

a ,c
< — —
0<d<b, and 5 #+ pi

imply that

THEOREM 1J.2. Every best approxzimation of the first kind is a conver-
gent or an intermediate fraction of the continued fraction representing that
number.

a
PROOF. Suppose that 7 is a best approximation of the first kind of the
a a
number x. Then, first of all, 3 > ag because if 3 < ap then the fraction
a a
%, (being distinct from 3 and having a denominator that is no greater

than b,) would lie closer to z than does %. Therefore % would not be a
best approximation of the first kind.

a a
Also 3 < ag + 1, because supposing 3 > ag + 1, then

1
%—x:‘m—%‘>‘x—a0;— ’:ao—kl—m
1

(z =ap+ < ap+ 1 as all q;s are integral).

/al,.../
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a
But this contradicts 3 being a best approximation of x of the first kind.

a_a a ap+1 +p_
o= R then < is a convergent, and if — = 0 _poTp 1’
b 1 do b b 1 qo +q-1

a ., . . .
then 7 is an intermediate fraction of . Thus we can assume that

a
a/o<g<a0+1.

a
Suppose towards a contradiction that — does not coincide with a convergent

or intermediate fraction of the number z, then it must lie strictly between
two consecutive such fractions. For instance for properly chosen k and r
(withk >0, 0<r <agp1ork=0,1<r <ay),it will lie between the
fractions

DT + Dr—1
qkT + qr—1
and
pe(r+ 1)+ pr—1
ar(r+1) +qr—1
so that

’g _ Pkr APt ‘ o |Pelrt DA pet  per+ P ‘
b qrr + qr—1 q(r+1) +aq-1  @r+ a1
1
(ar(r +1) + qr—1) (g7 + qr—1)
On the other hand, it is obvious that
’g _ Pk?“-f—pkﬂ‘ _
b qer+gi-1! blgkr +qr-1)

where m = |(qe7 + gr—1)a — (prr +pr—1)b] > 1 as m is an integer that can’t
be zero because of our assumption. Consequently,

1 1
<
b(ger +qe-1)  (gr(r +1) + qe—1) (7 + qr—1)

m

and hence,
gr(r+1) 4+ qr_1 < b.
Now the fraction
pr(r+1) 4+ pr—1
ar(r+1) + qe—1
with denominator less than b is closer to the number x than is the fraction
DT + Dr—1
qrkT + qr—1
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(because, in general, from 1F.6, every intermediate fraction is closer to «
than is the preceding one) and hence it is also closer than is the fraction

a
7 which lies between the two previous expressions. This contradicts the

a
assumption that 3 is a best approximation of the first kind and the proof

is complete. B

a
DEFINTTION 1J.3. A fraction 7 for b > 0 is called a best approxima-

tion of the second kind of a real number z if
a ¢
0<d<b d - # -
<d<b, an 2 #* 7
imply that
|dz — ¢| > |bx — al.

THEOREM 1J.4. Every best approximation of the second kind is neces-
sarily a best approximation of the first kind.

a
PRrROOF. Indeed assuming towards a contradiction that — is a best ap-

proximation of x of the first kind but not a best approximation of the
second kind we have:

a ¢
0<d<b T
<dsb  TF

Then on multiplying the first of these inequalities by the third we obtain

|dz — ¢| < bz — al.

a
So — is not a best approximation of the first kind and we arrive at a
contradiction. -

The converse is not true: a best approximation of the first kind can fail

1
to be a best approximation of the second kind. For example the fraction 3

1
is a best approximation of the first kind of the number . (It can be easily

5
. . 1 1 1 f 1 1 1 f
verified that for all integers f: ’gfg < £ 3 and ‘375 < 571.)

However, it is not a best approximation of the second kind because:

-2 0«32 and 1<3
5 5 an .
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THEOREM 1J.5. Ewvery best approzimation of the second kind is a con-
vergent.

a
PROOF. Suppose that the fraction 3 is a best approximation of the sec-

ond kind of the number # = /ag,a1,.../ whose convergents are Pk 1t
gk
a
were 3 <ag= 2l then as b > 1 we would obtain
q0

|1~J;—a0|<‘m—%’§’bm—a’

a
That is — would not be an approximation of the second kind. Thus,

b
_n
qo

> ag

o> 2

a
Suppose towards a contradiction that the fraction 7 does not coincide

with one of the convergents, then one of the following two cases must occur:

a
Case 1: If — > by then

b ¢
‘x,g‘z)&,g‘zi
b q1 b bqa
so that
1 1
bz —a] > — = —.
q1 al
On the other hand,
1
1-2z—ao <—
ai

so that
|bx —al > |la-x —ag|, 1<0b,

a
which contradicts the assumption that 7 is a best approximation of = of
the second kind.

a _ ’
Case 2: Else if — lies strictly between two convergents Pr=1 and pH_l.
b Q-1 k+1
So
‘g B pk+1’ > 1
b e+ bqk+1
and
‘g_pkﬂ‘ < &_pkq’: 1
b i+ W qk—1!  GrQr+1
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so that
(50) b > qy.
On the other hand,

1 1
‘ a’> Prk+1 @ >

bl 7 lgrs1r bl bgrta
and hence
|bx — a| >

qk+1

whereas
1
|lgrz — pr| <
qrk+1

so that
(51) lgrx — pi| < |bx — al.

Inequalities (50), (51) show that % is not a best approximation of the second
kind. -

THEOREM 1J.6. Every convergent P form > 1 is a best approximation
of the second kind. o

Remark: In the case of x = ag + %, the fraction % = % is not a best
approximation of the second kind because

1z —(ap+1)=1-|1-2— agpl

For a proof of Theorem 1J.6 see [4].






CHAPTER 2

SOME NUMBER THEORY

We state some basic results from number theory, mainly concerning the
behavior of some common arithmetical functions for large values of n, that
we will use later. Omne could skip this chapter and refer to it whenever
necessary. We will follow closely the presentation in [3] and [9].

Recall that for two functions f,g on the natural numbers,

f=0(g9) < forsome A >0 and all z,|f(z)| < Ag(z).

This is easily equivalent to assuming | f(x)| < Ag(x) for all sufficiently large
T

THEOREM (The Fundamental Theorem of Arithmetic, [3]). The
standard form

n=p'py®> ppt a1 >0,a2>0,...,a, >0 p1 <p2<...<py

of n is unique, for n > 2.

2A. Sieve methods

THEOREM 2A.1 ( [9]). Let Ai,..., A, be subsets of a finite set A, let
B = A\U;_, 4;, and let f(z) be any complex valued function defined on
A. For j <r we put

J
Ty = fl@)+) (-1)° > >, f@).

€A s=1 {i1,0 0 JC{1,... r €A N..NA;,

Then

> f@) =T,

zEB
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PROOF. If g is a characteristic function of the set B, and f; that of A;,
then for any = € A we have

(52) gle) =1+ (-1)° > fir(@) - fi, (2).

s=1 (i1, is}C{L e 1}
Indeed, if € B, then both sides of (52) are equal to 1. If, on the other
hand 2 ¢ B, and « belongs to exactly m sets A;, say to A;,,... , A;,,, then

the left hand side is equal to zero and the right is equal to

14> (-1)° > 1:1+Z(—1)S<":) —(1-1)"=0.

s=1 {itsesia Y {1, sim }
Multiplying both sides of (52) by f(z) and summing over all z € A, we
obtain T}, = > 5 f(x) (using the fact that AN B = B). !
COROLLARY 2A.2 (Inclusion exclusion principle). Let A;,..., A, be

subsets of a finite set A and B = A\J;_, A;. We have

B = [4] + Y (-1)° 3 [Ai, N0 Ay

s=1 {i1,... ;i }C{1,...,r}

PROOF is immediate applying Theorem 2A.1 with f(z) = 1. -

2B. Modular Arithmetic

DEFINITION 2B.1. Let m be an integer. We say that two integers @ and
b are congruent modulo m if m divides a — b and write a = b mod m.
That is

a=bmodm&m|a—b.
DEFINITION 2B.2. A relation ~ in a nonempty set A is called an equiv-
alence relation in A if
1) (Va € A)[a ~ d]
2Q)a~b=b~a
3)[a~b& b~ = a~c Foreach a € A we define the equivalence
class of a,

[a] = {z € Alx ~ a}.

Clearly a ~ b if and ounly if [a] = [b].
It is easy to check that the relation ~ defined by

a~bs a=bmodm

is an equivalence relation.
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DEFINITION 2B.3. If x = @ mod m then a is called a residue of z mod-
ulom. If 0 < a <m —1, then a is the least non-negative residue of x
modulo m.

The equivalence class of a € Z is

[a] = {z € Z| x = a mod m}
={zreZm|x—a}
={z € Z| x — a = km, for some k € Z}.
DEFINITION 2B.4. We denote by Z,, the set of all equivalence classes
defined by (2B.1). A complete set of (incongruent) residues mod m

is any set X of natural numbers which contains exactly one member of each
equivalence class [a] € Z,,, for example the set {0,1,2,... ,m — 1}.

THEOREM 2B.5. Suppose that (m,m') =1 and that a and a’ run through
a complete set of incongruent residues modulo m and m’ respectively. Then
a'm+am’ runs through a complete set of incongruent residues modulo mm/’.

PRrROOF. There are m possible values for a and m’ possible values for a.
So there are in total mm’ possible values for a’m + am’. If two of these
numbers were congruent then

aym + aym’ = ahm + aom’ mod mm/’
which means that
mm’ | (a] — ay)m + (a1 — a2)m/,
S0
m | (@} —ay)m + (a1 —az)m’ and m' | (a}] —ay)m + (a1 — az)m’
and as (m,m’) =1 the latter yields
m|ay —ay and m'|a) —a},
or equivalently
a; =as mod m and a} =aj mod m’

which is a contradiction.
Hence the mm’ numbers are all incongruent and form a complete set of
residues mod mm/’. 4

DEFINITION 2B.6. A function f(m) is multiplicative if (m,m') = 1
implies that
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THEOREM 2B.7. (a) If f(m) and h(m) are multiplicative functions of
m, then so is g(m) = f(m)h(m).

(b) If f(m) is a multiplicative function of m, then so is

g(m) = _ f(d).
d|m
PRroOF. (a) Take m,m’ such that (m,m’) = 1. Then
g(mm/) = f(mm’)h(mm') = £(m) f(m') - h(m)h(m')
= f(m)h(m) - f(m")h(m') = g(m)g(m').

(b) Take m,m’ such that (m,m’) = 1. If d | m, and d’' | m’, then

(d,d’) =1 and ¢ = dd’ runs through all positive divisors of mm/'. Hence

glmm!) = Y fle)= > fldd)

c|lmm’ d|n,d’|n’

=Y f@d) _d | m/'f(d) = g(m)g(m'). .
d|m

DEFINITION 2B.8 (Euler’s function ¢(n)). We denote by ¢(n) the num-
ber of positive integers not greater than and coprime to n. That is the
number of integers satisfying:

0<m<mn, (m,n) =1.
THEOREM 2B.9. Euler’s function ¢(n) is multiplicative.

Proor. Take m, m’ such that (m,m’) = 1. We want to show that
d(mm') = ¢(m)d(m’). By Theorem 2B.5, a’'m + am’ runs through a com-
plete set of residues mod mm’ when a and o’ run through complete sets
mod m and mod m/' respectively. So for finding the value of ¢p(mm') we
just have to find the number of values of a’m + am’ which are prime to
mm’. But

< [(d'm+am’,m) =1& (a'm +am',m') = 1]
& [(am’,m) =1 & (a'm,m’) = 1]
& [(a,m) =1& (a',m') =1].
Therefore the ¢(mm’) numbers less than and prime to mm’ are the least
)

positive residues of the ¢(m)p(m’) values of a’m+am’ for which a is prime
to m and a prime to m’'. -

(@'m+am/,mm') =1

Theorem 2B.9 gives us an easy way to compute the values of ¢(m):
THEOREM 2B.10. For all m > 2,

¢(m):mH(lf%)

plm
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PROOF. First of all, for p prime,
1
() =p° —p' = pc(l - 5),

because the positive numbers less than or equal to p® that are not prime to
p°¢ are the multiples of p that have the form ap, where 1 < a < p°~!, and
there are p°~' such numbers.

Now if m = p{* -- - p% then using Theorem 2B.9 and this we get

d(m) = d(py") -~ P(p5°)
1 1
:pi“(l_];)”'p(sls(l_;q)
=mH (1—;1)).

plm B

2C. Dirichlet series

A real Dirichlet series is a series of the form

F(s)zz%, seR.

n=1
The sum of the series F'(s) is called the generating function of a,.
THEOREM 2C.1 (Uniqueness Theorem ([3], §17.1)). If > a,n"% =0 for

s > so, then ap =0 for all n.
As a consequence if

o0 o0

Z L Z b”
ns ns

n=1 n=1

for s > s1, then a, = b, for all n.

Multiplication of Dirichlet Series. We are given a finite set of Dirich-
let Series

(53) Z apn”?, Zﬂnn_s, nynn_s, e

and we want to compute their formal product, that is we want to compute
a series > x,n~ % such that

(54) Xn = Z Qo fuw
uvrw---=n
A way to understand the formal product is that we want to form all
possible products with one factor selected from each series.
The cases we will most often encounter is the multiplication of two or
three series.
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Say we want to multiply > a,n"% and > S,n"%. If we denote their
formal product by > &,n~* then

(55) bn= Y aufy =) aafn =Y onpy
uv=n d|n d|n

And if the two series are absolutely convergent, and their sums are F(s)
and G(s), then we can write

F(s)G(s) = Z auu’ Zﬂvv_s = Z vy By (uv)™?
=Y 0> @By =) Lan "

uv=n
Notice that we have just rearranged the terms of the product.
The definition of the formal product can be extended to an infinite set
of series.
We will now have to take
alz,@l:%:...:l

because we want the term a8,y - - - in (54) to contain only a finite number
of factors which are not 1 (every n = ay8yYw - .. € N is finite), and if the
series is absolutely convergent! we can define y,, by (54).

THEOREM 2C.2 ([3], Theorem 285). If f(1) =1 and f(n) is multiplica-

tive, then
> fln~
is the formal product of the series
L+ f)p™ + F0*)p™> + .+ [ )p ™™+
PRrOOF. We are now considering the case when the series (53) are

L+ f)p + F0)p 2 + . 4+ fOM)p ™ + ...

where p = 2,3,5,... takes value over all primes. The Fundamental The-
orem of Algebra guarantees that every n occurs only once as a product
uvw - - - with a non-zero coefficient, and

xn = f(P1)f(p3°) -+ = f(n)
for n = p{*ps?--- -

COROLLARY 2C.3. The formal product of the series

L4+p +p 2+ +p ¥+ s Zn_s.

I'We must assume absolute convergence because we have not specified the order in
which the terms are to be taken.
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THEOREM 2C.4 ([3], Theorem 286). If f(1) =1 and f(n) is multiplica-

tive and
> Ifm)n

is convergent, then

F(s) =Y fn=* =[]0+ f@p "+ F@)p > +...].

p

PRroOF. The terms of the series [] _p[l + f(p)p™° + FHp=25 +...]
are all terms of the form B

2R L Prars (970 f(3705) . f(PTOr)
— (20,23(1,3 . Pap)fsf(2a23a3 .. P(J,p)7

where az > 0,a3 > 0,... ,a, > 0. Note that we have just used the multi-
plicative property of f. The Fundamental Theorem of Arithmetic guaran-
tees that each of these terms appears only once. Letting n = 2923%3 ... pep
this yields

[Hi+r@p+f@p>+...1= > fln)n~*

p<P nEHp

where Hp = {n € N| p| n = p < P, for p prime } is the set of all numbers,
that do not have any prime factors greater than P.
As {n e N|n < P} C Hp, we have

0<|> fn=s = > fmn~e| < D 1f)n <> Ifm)ln .

n€Hp n¢Hp P+1
But
o0
1 i
Jim 3| fn)lnt =0,
P+1
and so

n=1 n€Hp
= li —s 2\, —2s
—]}ggcll[Hf(p)p +F P ]
P>

=110+ f@p~ + f* > +...).
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2D. Arithmetical functions and their order of growth

DEFINITION 2D.1 (The Mdbius function u(n)). is defined as follows:
(i) p(1) =1

(ii) p(n) = 0 if n has a square factor;

(iii) p(pip2 -+ pr) = (—1)* if all the primes py,po,... , pr are different.
One can see from the definition of p(n) that it is multiplicative.

The Mobius functions combines well with the Principle of Inclusion and
Exclusion, as in the following facts.

PROPOSITION 2D.2. Let D = {p1,... ,pn} be a set of distinct prime
numbers and let A be a given finite set of integers. Denote by S the number
of elements of A which are not divisible by any of p;’s, and by Sy number
of elements of A divisible by d. Then we have

(56) S= > ud)Sa.
dlpr--p

ProoOF. We apply Corollary 2A.2, taking A; to be the set of elements of
A divisible by p;. Then for d = p;, ...p;,

Sa=Sp;,..ps, = A NN Ay,

and p(pi, ... pi.) = (—1)%, so that
T, = Z ,u(d)sd

d|p1..-pn B

PRrROPOSITION 2D.3. Suppose f(k) is any complex-valued function.
(a) Let D = {p1,... ,pn} be a set of distinct prime numbers and let A
be a given finite set of integers. Then we have

Yo f@= Y u@) Y f(kd).

z€A d|p1-pn kde A
(z,p1--pn)=1

(b) For all j and x:

Yo fk) =Y u(d) Y f(kd).

(k,)=1 dlj kd<z
k<ax

Proor. (a) We apply Theorem 2A.1, taking A; to be the set of elements
of A divisible by p;. Then if d = p;, ...p;,, and Sy is the set of all elements
of A divisible by d, we have

Si = Spi g, = A N...N A, = {h| h € A,h = kd for some k € N}
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and p(pg, . -.pi.) = (=1)%, so that

To= Y, wld) ) f(kd).

d|p1...pn kde A

(b) We apply (a) taking A to be the set of all positive integers less than z.
Then the positive integers less than z that are coprime with j are coprime
with all the prime factors, say p1,... ,pn, of j. But if d has a square factor,
then p(d) =0, so if p1, ..., p, are the different prime factors of j, and we

have,
Stk = > wld) > Flkd) =" puld) Y flkd).

(kk,j<):1 d|p1i...pn kd<z d|j kd<z —

By Proposition 2D.2, taking A to be the set of all numbers less than n

and D the set of all prime divisors p,p/, ... of n, we obtain
(57) ¢<n>=n—§}+zf,_...:nz%:nn(l_,),
p bp i oin P

which is a strengthened form of Theorem 2B.10.
THEOREM 2D .4.
1 o n=1
> u(d) = )
e 0 i n>1

PRrROOF. If n =1 we have u(n) = 1.
Suppose now that n > 1, and the standard form (see the Fundamental
Theorem of Arithmetic) of n is

n=pi'---p*, where k > 1
then using only the definition of u(d) we have

Z/‘(d) =1+ ZH(Pi) + Zu(pipj) +...
din i ij

:1—k+(§)—<§>+...=(1—1)’“:0. 4

PropoSITION 2D.5 (The Mébious inversion formula). If
n n
g(n) =Y £(d), then f(n) = p()g(d) = n(d)g().
d|n d|n d|n

Proor. We have

> udg(5) =S ud) D Fe) = D ud)fe) =Y £e) D uld).
dn dn e

n

cl% cd|n cln
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But form Theorem 2D .4

1 if E:1<i>n=c
> u(d) = ¢
d| 2

0 otherwise

which yields
S0 S uld) = f(n).
c|n d)|z
For further reference see [3], §16.4. o

DEFINITION 2D.6 (The zeta function). The zeta function is the sim-
plest infinite Dirichlet series

)=

n=1

It converges for s > 1. In particular (for a proof you can see [2])

1 2

(58) @@= =%

oo

n=

1
THEOREM 2D.7 (Theorem 280, [3]). For s > 1 we have
1
C(s) = H —t

PROOF. Since p > 2, for s > 1 we have

e =14+p*+p B 4+....

Now the terms of the series [[ o p(1+p~° + p~2 +...) are all terms of
the form B

27@2837&38 ... Pfaps — (2@23(13 .. Pap)fs
where az > 0,a3 > 0,...,a, > 0. The Fundamental Theorem of Arith-

metic guarantees that each of these terms appears only once. Letting
n = 2%23% ... P% thig yields

1 —s
R

p<P neH

where Hp = {n € N|p|n = p < P,for p prime} is the set of all numbers,
that do not have any prime factors greater than P.
As{neN|n < P} C Hp, we have

oo oo
0< Zn_s— Z n °< Zn_s.
n=1

ncHp P+1
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But
o0
1 ° =
Pgnoo Z " 0
P+1

and so by the Sandwich Theorem

nizns = lim Z n~® = lim T _1 = 1;[ T —1p—5'

Poo neH P_}OOPSP P B
THEOREM 2D.8 (Theorem 287 [3]). We have
1 & pln)
W
Proor.
1
—=JJa-p by Theorem 2D.7
OIS
= H[l + up)p ™+ pp*)p~ > + .. p(n) is multiplicative

»

Z “(7:) by Theorem 2C.4.
n

n=1

The function d(n) is the number of divisors of n, including 1 and n.

d(n) = Z 1
d|n

by Theorem 315, p.260 of [3], for all e:

(59) d(n) = O(n®).
The function o (n) is the sum of the k-th powers of the divisors of n.
Thus
or(n) = Z d*.
d|n
So

oo(n) =d(n)

and reversing the order of summation, (which is a very common trick,)

d
o-1(n) = Z% = Zﬁ = %Zd: %al(n).
d|n d|n d|n



64 2. SOME NUMBER THEORY

The order of o1(n) is O(nlnlnn). See Theorem 323, p.266 of [3].
Consequently it is

(60) o_1(n) = O(lnlnn).

Now we are going to see two theorems that enable us to get very useful
results about the order of growth of sums over the integers using integrals.
Our presentation is based on [3] and [9]. In the latter book you can also
find other similar results.

THEOREM 2D.9. Suppose c1,ca, ... is a sequence of numbers, such that
(61) Ct) =Y cn,
n<t

and f(t) is a function of t. Then
(62) Y enfn)= Y C){f(n) = fln+1)}+C)f(lz)).
n<z n<lz—1
And if ¢; =0 for j < ny and f'(t) is continuous for t > ni, we also have
(63) > enfn) = Cw)f@) - [ Cwf @
n<z n1
Proor. Let N = |z]. From (61) we get
Cl)=c1,C2)=c1+coy...,¢c(N)=c1+...4¢p
SO
c1=C(),ca =C(2)—C(1),...,¢, =C(N)—C(N —-1)
Substituting these expressions for ¢, ca, ... , ¢, we get that

Y eaf(n) = CMFMHO@)=C)}H(2)+. . HO(N)=C(N-1)} f(N)

= CO){F(1) ~ F}+- .+ CN = D{F(N 1)~ F(N)} + C(N) F(N).

And as C'(N) = C(|z])C(x) we have proved (62).
For the proof of the second part the main observation is that C'(t) = C(n)
when n <t <n+1, and so

n+1

C){fn) - f(n+1)} = ~C(n) / oy

n

n+1
= —/ C(t)f'(t)dt.
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Consequently
> enf(n) -, /
n<x n<lz—1

lz]
— C@)f(lz)) - / O (1)dt
/C t)dt + IC(t)f’(t)dt
lz]
/c Hdt + Ca){f(x) — £(lz))}

—/‘c

THEOREM 2D.10. If a function decreases to zero and has a continuous
derivative in the interval [1,00), then for every x > 1 we have

S Fn) = (F(1) - C) + / " f(0)dt 1 0(5(1)

with C = ff(LtJ_— ) f(t)dt.

PRrRoOOF. Taking ¢, = 1 and n; = 1 we get C(t) = |t] and so equa-
tion (63) gives

(64) > f0) = Lol ) - [ e ()t

n<z

We can take C' = [ (|t] — t)f'(t)dt as the integral is convergent being
majorized by [~ (— f/(t))dt = f(1). So we can write

/1 [t) 7' (£)dt = / (1t) — )/ (D) + / HF (1)t

- /1°O(m — 1) f'(t)dt — /:O(Ltj —t)f (t)dt
—/mftﬁ
—C— / (t)dt + z f (2 / f(@t)

=0—0</z ~ran +of@ - 1)~ [ far

(as0<t—|t] <1)

=C+af(z /)f t)dt —
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Substituting now in (64) we get

S° ) = (2] — 2)f(2) — € + F(1) L/f )t + O(f(x))

n<lx

- 0+/f )t + O(f ()

using again that 0 <z — |z] < 1. =
COROLLARY 2D.11 ( [3] Theorem 422).
1 1
(65) Zézlnn—l—v—&—O(E):lnn—I—O(l),
kE<n
where

e [,

This is very basic asymptotic formula of which we will very frequently
make use.

ProoF. We will use the previous Theorem ( 2D.10 ) applied to the
1
function f(t) = 7 (Of course lim;—, o f(t) = 0.)

Z%:l—C—i—/w%dt—i—O(%)

1

n<z
1
:1nx+7+0(7>,
T
where
(- 1t)
Jmmomi [Tty .
COROLLARY 2D.12. We have
| 1 1
(66) M=71n295+01+0(0g$)
n 2 T
n<z

for some constant C1.
Proovr. Just as before, we will use Theorem 2D.10 applied to the func-

Int

tion f(t) = -+ (Of course lim;_,, f(t) =0.)

] 1 1
ﬂ—l—c-‘v—/ it o nx)
Xz

n<x

= Ci+5 L2 m+0(lnw),

T
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where we have used that

Int

/ —dt = In*¢,
because
Int Int
[t e - [ ]
LeMMA 2D.13.
Inn
(67) > — =0(1)
n<x
(Inn)?
(68) > =0m
n<x
ProOF. By de I’ Hospital’s we have
. (Inr)? Inr . I
A e = e = e =0
and since
PRERPS
2 b
r=1 T
we have that
=~ (Inr)? Inr
= ]_ _— =
2 . > Sz =00 .
r=1 r=1
LEMMA 2D.14.
1 1
(69) 5 =0()
r>x
ProoOF.
Y a<Trrn- GGt
(r+ 1 r x+1 r+1 zxz+2
r>z
1 -1 1
—+ I =0(-).
Tz + I»Hngo z+k (:c) R

The rest of the chapter will be

very useful for anyone who would like to

read Heilbronn’s paper [4]. (It was very interesting to see which ideas of [4]
are reproduced in [6] and how they are extended.)
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LEMMA 2D.15.
u(d) = p(d) p(d)
(70) =2 g
d=1 d=1 d>n
_ Ll e _ 6 0L
@ = +0)
LEMMA 2D.16.
—~ ¢(m) 6
i 2 Ty g T OMnn)

PROOF. The method of proof is very similar to that of [3], Theorem 330.
We have:

é) (by (70) and as |u(d)| < 1)

=
I|= 3=

=n— +n0(=)+O(Inn) (by (65))
6
=n— +O(Inn). 4
LEMMA 2D.17.

(72) 3 d’;“;) = nny +0(1)

m=1

PROOF. The proof is very similar to that of the previous lemma:
First of all

(73) ~u(d) _ i p(d) N~ p(d)

d? d?
d=1 d=1 d>n
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,_
a3

n J
d) &1
Z% d

d=1 d’'=1

<

"gm) s 1 e pld)
e DD DD D
m=1 dd/ﬁn

m=1 |m

—

(SOM%+Om)

1(?(m3+0u»

(by the Mean Value Theorem)
“ pi(d) p(d lnd — p(d)

i 3D SO o3
d=1

_ glnnm(l) (by (68)) A

|
&Mz
&F

3 |l
_

Y
Il

Note also the inequality:
6 1
(74) S _ L o,

which holds because







CHAPTER 3

AVERAGE CASE ANALYSIS OF THE
SUBTRACTIVE EUCLIDEAN ALGORITHM

In this (main) part of this paper, we will establish an asymptotic formula
for the average complexity of the subtractive Euclidean algorithm, the cel-
ebrated Yao-Knuth result in [6].

3A. Preliminaries

In this Chapter we deal with simple continued fractions whose first partial
quotient is zero, that is continued fractions of the form:

1

= /0,1’1,1’2,... 7mr/
T+ —————
T2 + . 1
o
Ty
Obviously any continued fraction in this class lies in the interval [0, 1]. This
is a short of normalization, very useful when one wants to use probability
theory, see for instance [6].
Now the basic observation is that

1

75 0 ) —
(75) [0, 81,8, 2/ /T, T2, T/

This gives us an easy way to modify the results of Chapter 1.
THEOREM 3A.1. (analog of Theorem 1A.8)

Qn(xy, 29, ... y2p)
76 0,20, 21,... ,2n/ = .
( ) / 0 ! n/ Qn+1(1‘07x17"' awn)

PROOF is easy, taking the reciprocal of the continued fraction in Theo-
rem 1A.8. 4

71
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If the partial quotients of the Q-polynomials in (76) are evaluated over
N\ {0} they are relatively prime by Theorem 1D.4 and we will make very
frequent use of this fact.

We will use very few results about continued fractions, but a very good
general understanding of Q-polynomials and continued fractions is crucial
for understanding the proofs in this chapter.

Subtractive Euclidean Algorithm. Here is Euclid’s succinct descrip-
tion of the subtractive Euclidean algorithm: given two numbers, replace
repeatedly the larger number by the difference of the two until both are
equal; then their greatest common divisor is the common value.

For example:

{18,42} — {18,42 — 18 = 24} — {18,24 — 18 = 6} — {18 — 6 = 12,6}
— {12 -6 = 6,6}.

so the answer is 6. And the number of subtraction steps is 4.
More strictly the Subtractive Euclidean Algorithm can be formulated as
follows:

1. If u =1 or v = 1 terminate with 1 as the answer.
2. If u = v, terminate with u as the answer.

3. If u>wvsetu«—u—wvandgoto 1.

4. If u < v set v+ v —wu and go to 1.

The Fuclidean algorithm with use of division is:
42=18-246
18=6-340

. . . 18 |
the continued fraction representation of o) is:

18 1 1
E=O+71=0+71=/0,2,2,1/
2+§ 2+71
2+I

@n=2 q=2

The number of subtraction steps equals 2+2=4. This is reasonable: when
we divide two numbers n, m such that n = g-m +r with 0 <r < n it is the
same as subtracting m from n, ¢ times. (Recall that the partial quotients in
the continued fraction algorithm are exactly the quotients in the Euclidean
algorithm.)

So the division 42 = 18 - 2 + 6 corresponds to the two subtractions:

{18,42 — 18 = 24} — {18,24 — 18 = 6},
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while the division 18 = 6 - 2 + 6 corresponds to the two subtractions:
{18 —6=12,6} — {12—6 =6,6}.

In our example the two possible continued fraction representations are
/0,2,2,1/ and /0,2,3/. The reason we choose the representation /0,2,2,1/
and do not count the final 1 when counting the subtraction steps, is that
if we implement the division algorithm with subtractions we perform one
more subtraction step than does the original subtractive algorithm for the
ged which in our example is {6,6} — {6,0}. (The subtractive algorithm
terminates when the two numbers of the pair are equal.)

DEFINITION 3A.2. Let r = r(m,n) denote the number of divisions by
the FEuclidean Algorithm.

THEOREM 3A.3. For alln > m > 2, r(m,n) < 2logm. Consequently
r(m,n) = O(logn).

PROOF is by complete induction on m. We must consider three cases:

Case 1, m | n; now r(n,m) =1 < 2logm, since m > 2 and so logm > 1.

Case 2, n = mgy +r1 with 0 < r; <m, but r1 | m; now r(n,m) = 2, and
2 < 2logm, as above.

Case 3, n = mqy; + 71 and m = r1gs + r2 with 0 < r2 < r; < m. Notice
that the last, triple inequality implies that m > 3. If ro = 1, then only one
more division is needed, so r(n,m) = 3, and (easily) 3 < 2log3 < 2logm.
Suppose then that ro > 2, and consider the next division,

r1=Tr2q3 + 73 (g3 > 1,0 <7z <rg).
Using the facts that g > 1 and ro < 1y,
m=riga+7r2 > 711+ 712 > 219,
which by the Induction Hypothesis for ro > 2 gives
r(n,m)=2+r(r1,r2) <2+ 2logry

<24 210g(%) = 2(1 + log(%) < 2logm,
as required. B

DEFINITION 3A.4. Let S(n) denote the average number of steps to com-
pute (m,n) by the subtractive Euclidean Algorithm, when m is uniformly
distributed in the range 1 <m < n.

We will prove the following main theorem:

THEOREM 3A.5 (Yao & Knuth).

S(n) = %(lnn)2 + O(log n(loglogn)?)
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It is obvious that this proof has been the result of a very careful reading
and deep understanding of [4]. Heilbronn was in fact interested in a Number
Theoretic question, that turned out to be essentially the question of the
average case analysis of the Euclidean Algorithm (with division).

Let |x| denote the largest integer less than or equal to .

T
Then # mod y = z — y|—] is the remainder of x after division by y.
If 1 < m < n, then by the continued fraction algorithm there is a unique
(because of the 1 at the end) finite sequence of integers such that
m
— = /an17q27"' aqT‘71/
n
Moreover the g; s are the quotients in the FEuclidean algorithm that uses
division. We have 1 < m < n, hence — < 1 Suppose the division equation
n
for the pair {n,m} is:
n=qgm+ry, 0<ri<m
m m 1
Ifry =0then —= — = —.

nooqm q
Else if r1 #£ 0 it is

m 1 1 1
n_n_mq1+r1_ 1
m
where
n 1 n mod m
n=—), —=——<L
m m m
. n mod m . . .m
Now since —— < 1 we can continue the algorithm substituting — by
m n

n mod m

n
The number of subtractions required to compute the ged (m,n) is pre-
cisely q1 + g2 + ... + g, because we subtract the smaller integer m from

the greater n “as many times as we can”, that is g1 = [—] times, so we
m

subtract until the remainder is strictly less than the greater number. Then
we see how many times we can subtract the previous remainder from the
smaller number. So we see that the subtractive algorithm does exactly
the same computations as the Euclidean algorithm, when division is im-
plemented by successive subtractions, so that each division with quotient q
corresponds to q subtractions of the same number. Except for the last step,
where we perform ¢ — 1 in order to end up with two numbers, both equal
to the greatest common divisor, rather than with a zero and the greatest
common divisor.
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So if we let
C(mv TL) =q (ma n) +...+ qr(m,n) (my TL)

then the average number of steps of the Subtractive Euclidean Algorithm
will be

S Clmin) S S gy (m,m)

n n

(77) S(n)

(m is uniformly distributed in [1,n] so the probability to hit some specific

1
value of m is —.)

n

What we are going to do next is reduce the problem of computing the
quotients g;, to the problem of adding up all solutions of the equation
zx’' + yy' = n under certain conditions.

DEFINITION 3A.6. For n > 1, a quadruple {z,2’,y,y'} is an H-repre-
sentation of n if

n=zxz'+yy, (zr,y)=1
x>y >0, 2 >y >0.

The name H-representation was given by Yao and Knuth to honor Hans
Heilbronn, as it is a sharpened form of a representation first introduced by
Heilbronn in [4].

THEOREM 3A.7. There is a 1-1 correspondence between H-representa-
tions of n and ordered pairs {m, j} where

1
O<m<§n, and 1<j<r(m,n).

Furthermore if {z;,2%,y;j,y;} corresponds to {m,j}, and g; is the j + 1-th
partial quotient in the continued fraction

m
g :/07q17q27"' 3Gy 7%:1/7

then
Yj v
7:/07qja"'aq1/ 7:/anj+17"'7q7"71/
Tj j
and consequently
T
(78) ij =g
J

Note that the proof of Theorem 3A.7 that will be given here is not
the one presented in the paper by Yao and Knuth but is very similar to
the proof given by Heilbronn in [4] and gives a much better overview of
what an H-representation actually does. The recursive properties of the
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H-representations highlighted by the proof given by Yao and Knuth are
presented in the Appendix.

PRrOOF. Let d = (m,n) be the ged of m and n then we can develop m
n

in a unique way as a continued fraction ending with a 1:

m Qr(fZ27~ -5 qr, ]-)
— = 07q1aq2a"'7qa]— =
n / " / QT+1(q17' -5 4r, 1)

The Q-polynomials in this representation are relatively prime. (See Theo-
rem 1D.4 and Theorem 3A.1.) So

m:d'QT(q27"'7qT71) n:d'Qr-‘rl(qla"'aqTal)

m 1 1 o
we have supposed that 0 < — = — < 3 so it is
n
q1+ —
(79) g1 > 1.

Starting with a pair {m, j} let it correspond to the H-representation
{wjaxgayjay;}
where
ZFJ:Q](QM 7q]) x;:d'QTfj+1(qj+17"' aqT‘71)
Yy = Qj*l(qla .. 7qj*1) y; =d- QT*j(qur?y <o s qr, 1)
then {z;,2},y;,y;} is an H-representation:
(zj,y;) =1, by Theorem 1B.2
Moreover by Theorem 1B.4,
$]$; +y‘]y‘; =d- Q’r‘(q17' .- aqT71) =n
and as 1 < j <r one immediately sees that

33]'>yj2y1:Q0:1>0

x;-zy;-zx’rzy;,:d>0
so that
z;>y; >0
/ /
z; > y; > 0.
Notice that 1 = Q1(¢1) = ¢1 > y1 = Qo = 1 by (79) and that the only

case when z’; =y’ is for j = r, when 7} =y, = d.
We also observe that

/
J:/O7qja"'7Q1/ ‘Z :/quj+17"'7q7’a1/
ZL’]' .’Ej



3A. PRELIMINARIES 77

Consequently as /0,¢j—1,...,1/ < 1, we have
z, x;
J:qj—i_/ovqj*lv"'al/? hence \_JJ :qj
Yj Yj

The correspondence we have established is 1 —1, because supposing two dif-
ferent pairs {m, j} and {m1, j1 } corresponded to the same H-representation
{z,2',y,y'}, then if
m miy
(80) E:/07q1a"'aq7‘/a (]r>1 and 7:/0,])1,...,])7.1/, pT1>]—
y _ y _ .
we would have = = /0,¢;,...,¢q1/ and = = /0,p;,,... ,q1/, which by
x x
the uniqueness of a continued fraction representation ending with a 1,
/
means that j = j; and p; = ¢;,...,p1 = ¢q1- In the same way y—, =
x

/

/0,41, ,¢r,1/ and % = /0,pj41,... ,Pr,, 1/ implies that r = r; and
gj+1 = Dj+1,--- ,qr = Pr. But then by equation (80) we also have m = m;.
Conversely given an H-representation {z,z’,y,3'} of n we can determine

the unique {m,j} it corresponds to as follows.
First let

d= (I/> y/)
y '
Then develop = and — as continued fractions, with last partial quotient
z Y

greater than 1 (for the uniqueness).

y Qj-1(aj+1,... ,a1)
==/0,a;,...,a1/ =
T / ! 1/ Q](aj7 aa/l)
! d-Qs_1(ba,... b
Y 0,br, by = @il )
x/ d-Qs(b1,... ,bs)
The numbers aj, ... ,a1,b1,... ,bs are uniquely determined by {z,z’,y,y'}.

The number that is represented by the continued fraction
/O,al,... ,aj,bl,... ,bs/

has denominator n because

b/ = Qjts—1(az,-.. ,aj,b1,...,bs)

0 al,... ,a; b1
/7 ’ T Qj+s(a1,...,aj,b1,...,bs)

Again by Theorem 1B.4,
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d-Qjts(ar,... aj,by,...,bs)
=Qjlar, ..., a5)ld- Qs(br,- .. ,bs)]
+Qj-1(a1,... ,aj-1)[d- Qs—1(b2, ... ,bs)]
=xz' +yy =n

m
So /0,a1,...,a5,b1,...,bs/ = —, for some number m, and as we have
n

taken a1 > 1, it is also 1 < m < %n That is starting with an H-

representation {z,z’,y,y’} of n we have found the unique pair {m,j} it
corresponds to. -

COROLLARY 3A.8.
nS(n) = QZ%J +1— (n mod 2)

where the sum is over all H-representations of n.

PROOF. By the previous lemma the sum ) LEJ over all H-representations,
equals the total number of subtractions to corglpute the greatest common
divisor of m and n, (m,n) for 1 <m < 5

It is also the total number of subtractions to compute (m,n) for %n <m <n,
since if we have some m with

1 1
1§m<§n then §n<n—m<n

and the subtractive algorithm for the pair {m,n} differs from the subtrac-
tive algorithm for the pair {n — m,n} only at the first step, so they have
the same number of steps:

{m,n} = {n—m,m} — ... = {(m,n),(m,n)}
{n—m,n}t—->{n-—mm}—...—>{(n—m,n),(n—m,n)}.

Finally we add the cases:
Case 1. m = n here the algorithm ends after 0 steps. (We add 0 to the
formula.)

Case 2. m = 5" this case occurs only for n even and needs one step:

{3} = {55}

Consequently for the two previous cases we add

1 — (n mod 2)
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steps to the formula, as

1 ifnmod2=0
0 otherwise. -

1—(nm0d2):{

3B. Reduction of the problem

Let

denote the sum over all H-representations of n with z'y < %n
For the excluded H-representations with

<9
'y —
we have
/
1< 2«28 oD oy
Y y ry
(we use the fact that 0 < g’ <z’ and that 0 <y < z), so
1< ad <2
Y
which means that the excluded H-representations have
x
15 =1
Y

By (77) and Corollary 3A.8 we have

r(m,n)
Z qi(m,n) = 2ZL5J +1— (n mod 2).

81)  nSn) =Y
m=1 i
And as by Theorem 3A.3, 7 = r(m,n) = O(logn), we have

n r(m,n)

Z Z 1=mn-0(logn),

m=1 i=1

(82) ZLEJ = Z/\_gj + O(nlogn).

The following Theorem determines which H-representations of n satisfy

1 lx
z'y < 3™ and consequently gives us a way to compute the sum Z LEJ



80 3. THE SUBTRACTIVE EUCLIDEAN ALGORITHM

THEOREM 3B.1. Givenz’,y > 0 andz'y < %n, there exist H-representations
(z,2',y,y") of n if and only if

(ya n) = (y7 xl)'
And when this holds there are exactly (y,n) [[(1—p~?) such H-representations,
Y
(y,n)

PRroOOF. First let (z,2’,y,9y") be an H-representation of n then, as

where the product is over all primes p which divide (y,n) but not

n=zz +yy and (z,y) =1

we have
(z,y)=1
s "—n=zx :; s a’
(83) (y ) ‘ vy (y ) | = (yyn) | (x',y).
and of course (y,n) |y
Moreover
(y,2") |yy' +aa’ =n
= = @) | ),
(y;n) |y

So by (83) and (84) we get
(y,2") = (y,n).
For the other direction let
d=(y,n) = (y,2').
Then there exist a,b € Z such that
d=az’ +by.

We will show that if 2/,y > 0 and 2’y < in then (z,2',y,y’) is an H-
representation.

Lemma A. Suppose at least one of the numbers x,y’,n is different than
zero and that d | n and let d = (y,2").
(a) The set of all solutions {x,y’} to

(85) n=a'r+yy
s given by
an+qy bn —qx’
{eoygy ={—F— =5} fora€?,

where a,b € Z are such that d = ax’ + by.
(b) For k=0,1,2,... ,d — 1, ezxactly one value of q will give

bn — qx’ '
k- e L TS
<Y d < ) d

J:/
d
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(¢) Ezactly d consecutive values of q will satisfy
bn — qr’

d

0< <z, ie y <2

Proof . (a) Suppose we have a solution to (85), say {zo,%(}, and take

Y
(86) {9’} = {wo + a7
We observe that for any ¢ € Z, {x,y’} satisfies the equation =’z + yy’ = n.
We also have that all solutions to the equation n = 'z + yy’ are of the
form (86). Because if we have two pairs {z,y'} and {wo,y}}, such that

:L,/
,y(’)—qg}, where q € Z.

n=z'z+yy
n = 2"z + yy),
we get
(87) ' (x —x0) = y(yo — ),

and as d = (y, '),

J;/

Y
E(x — ) = g(yé —y).
'y z’
Since (E’ 8) =1, we get that ¥ | ¥4 — v’ Hence there exists a ¢ € Z such
! /
that y, —y' = q%, which means that y' = y(, — q%
get x = xg + q%.

. Then by (87) we also

So starting with a single solution {zo,y0} to (85) we can express every
other solution {z,y’} to n = 2’z + yy’ as

ZL'/
{$7y/} = {xo + q%,yo — qE}, for some ¢ € Z.

What remains is to find a solution {zo, y{} to (85). We have d = ax’+by’.
Since d | n we have

n=dl = Uy O
“YaT At T ar
. , an bn_ . . , ,
This means that {zo,y,} = {F’ F} is a solution to n = z'x + yy'.

(b) We want to see for how many values g we have
z’ x’ x
k- — —g— < (k 1) —

but this is equivalent to

/ ZL'/ ZL'/ ;L’/
(88) q-g<yo—k—andq—ZyO_(]g_|_1).E7

d d
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and as 2’ > 0, this is equivalent to
d d
Y8 _k>q >(%L—k)
x! T
But exactly one value of ¢ € Z satlsﬁes the preceding 1nequahty This

means that there is a unique y, with k - E <y, <(k+1)- =

(c) We have that for & =0, 1, 2 ,d — 1, exactly one value of ¢ will be

such that k- E <y, <(k+1)- d . Consequently, exactly d values of ¢ will
!/

satisfy 0 < y; <d- x—. These values are consecutive and this can be seen

as follows: subtracting 1 from (88), we obtain

@g_ —1>¢q —1>(Wd —1)—L
z x!
which is equivalent to
x/ xl .T/
1= — 1= 2) - —
(k+1)- 5 <po—(a+ D)5 < (k+2)- 2,
so if a specific value of ¢q gives a y, such that
/
T , x
Rl < 1). =
k 7 <y, <(k+1) 7
then
' x

4 (Lemma A)
By Lemma A, exactly d consecutive values of g will satisfy 0 < ¢/ < 2'.

1 n
From the hypothesis we have 2’y < Zn, and this yields — > 2y, so that
x

2
we have
n
(89) o TY>y
We have

_n—yy

= (as n = xz’ +yy')

A
> Q — 1y (because y—/ <1
! x

> . (by (89))

So d of the solutions {x,y’} to (85) satisfy > y > 0 and 2’ > ¢y > 0.
In order to count how many of these d solutions are H-representations, we
have to count how many satisfy (z,y) = 1.
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Lemma B. If p is a prime divisor of %, then p does not divide %, hence
p does not divide x.
Proof . Since (y,n) = d, we have
e
hence if p | %, then p 1 %
Now supposing towards a contradiction that there exists p such that

Y
= and
pls and pla
we get that

/
x
pla=+ b =1 which is a contradiction.

d d

/

T
(Note that d = (y,2’) yields that ] is an integer.)

n n
Now p is prime, pfa and pt —, so p ¢t a-. Suppose towards a con-

tradiction that p | z, then as by the hypothesis p | z we would have that

p|x:w. Soptz. - (Lemma B)

We have shown that p | % = p{x which is equivalent to:
Y
(90) plz=ptl

Lemma C. Let p1,...,ps be the primes that divide d but not % Then

if q takes p1 - - ps, consecutive values the set of all
an Y
P + -,
da " 1a
is a complete system of incongruent residues mod (p1---ps), and ¢(p1---ps) =
(p1—1)--- (ps—1) of these values z, will be relatively prime to p; - - - ps and
satisfy (y,xq) = 1.

Proof . Taking p; - - - ps consecutive values of ¢, we have a complete sys-
tem of incongruent residues mod (p; - - - ps). By the hypothesis pi,... ,ps

do not divide %, SO (%71)1 -++-ps) = 1. Then by [3], Theorem 56, we have

Ty =

an
that for these values of ¢, z, = — + qg is a complete system of incon-

gruent residues mod (p1---ps). Now @(p1---ps) = (pr — 1) (ps —
1) of these values x, will be relatively prime to p;---ps and will satisfy
(y,2z,) = 1. Because if we assume towards a contradiction that

(y,2q) # 1,
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then there exists a prime p such that p | z, and p | y. Applying (90) we
get that p t % But combining p ¢ % and p | y we realize that it must

be p | d. Hence p is one of the primes that divide d but not %, that is

pE{p1,...,ps} Butas (zg,p1---ps) =1, it is (x4, p) = 1, which means
that ptz, and we have arrived at a contradiction. - (Lemma C)

So taking p; ---ps consecutive values of ¢ we get pi ---ps values of z,,
and (p1 —1)--- (ps — 1) of these satisfy

(mquy) =1L

But when ¢ takes d consecutive values, we have exactly

complete

S
systems of incongruent residues mod (p; - --ps), like these in Lemma C.
So in order to obtain the total number of solutions that satisfy (z,y) = 1

we just multiply (p1 —1)---(ps — 1) by . Consequently the total
P1--Ps

number of solutions that satisfy (z,y) =1 is:

dpr—1)---(ps —1) _ 1
=d[Ja p)

P1-Ds

pld
ptY% _|

DEFINITION 3B.2. Let

P =S -T10 )

p
pln

and let P(n \ m) denote the similar product over all primes that divide n
but not m, that is

P(n\m):H(1—1).

pln p

pim

THEOREM 3B.3. For each n > 2,

z n. . m
(91) ZL;J ZZ Z P(E\J) Z j—k—i-O(nlogn-loglogn),
m|n (j,m)=1 (k,i)=1

2
1<k<gp=

where the sum on the left is taken over all H-representations (x, 2", y,y") of
n. Hence by (81),

(92) nS(n):2Z Z P(%\]) Z j%—i—O(nlogn-loglogn).

m|n (j,m)=1 (k,j)=1
2
1§k<’2ﬂTj
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ProOF. We will assume the “standard” notation (z,2’,y,y’) for H-rep-

resentations in the computation which follows.
n

s @ = Z + =, by (82) and Theorem 3B.1 we have:
Z Z Z (d P(d\ ( )) Z L§J>+O(nlogn)
i {2y e
!
- ; (Z) d- P\ (%) (Z) (5, — % +om)
<y< % 1§z’<%

+ O(nlogn).

!

But y—, <1, so

Z =Y > d-PA\( ) > (;—y+0(1))+0(nlogn).

dn (v,n)=d (z',y)=d
1<y<% 1§wl<%

If we write n = md,y = jd,z’ = kd, then

(y,n) =d so (jd,md) = d so (j,m) =1
(z',y) = dso (kd, jd) = d so (k,j) =1

m? _ m
on  2d

m  m? m?
1§xy<§sol<k]<2fd %andinparticular,j<%.

Replacing these in the formula above, we get, with some work:

SE=Y Y (EpE\) Y (o +0m) +Olnlogn)

n
m|n G, m> 1 (k,J‘):l2 m
i<, 271 1<k’<5n7]
=3 X PCAD Y
m|n G, M)zl (kyj)=1 J
P< B 1<k<2
n
+ E — E P( g O(1) + O(nlogn).
m. .
m|n Gym)=1 (k,5)= 12
i< 1gk<§nTj

So it is enough to show that

Z Z P Z O(1) = O(nlogn -loglogn)

m\n @, m) 1 (k,5)= 12
o
i<’ 2'n Isk<gn3
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Indeed,
iy 1<Z Y p(— \j) P!
k<

86

7n|n (3,m)=1 (k,3) 21 m|n (5,m)=1
i< Zl" k< 37‘1] i< Z‘"

<D 2 PL\Dg
(7,m)=1

m\n
A~

=> > P(%\J*

m|n (J',m)zl
. om?2
i<aon

<> X 5

mln G.,m)=1
m?2
i< o0

(as P(2-\§) < 1)

m|n
= O(logn - nloglogn) (by (60) (or [3], Theorem 323)),

Inm? flng = 21nm71n%
mn O(logn). .

where
2
In mo_
2n

(93)
= O(logm) + O(logn)

3C. Asymptotic Formulas
In this section we will prove some basic asymptotic formulas, which we
will then use to estimate S(n). Many fundamental number theoretic meth-

ods are used.
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LemmMA 3C.1. For p prime,

1
Z 260 _ O(loglogn).
b
pln
PROOF. Let n be divisible by k primes, so 2¥ < n and so k < logn. By

the Prime Number Theorem ( [3], Theorem 9) there exist constants c1, c2,
such that the jth prime lies between c¢1jlogj and cojlogj. Then

c1jlogj < pj < cojlogj < CQjQ = logp; < 2cplog j

50
log p log p; log j
;;p = 1<Jz.;kpj 0(1;“10&7)
= 0( 3 7) O(log k) = O(loglog ).
1S5
Lemma 3C.2.
oy DEP M0 () = Y 22 PG\ p) = Ofloglogn).

pln

PRrROOF. Let n = pi*---pp*, then for i = 1,...k, p; | n, so

(95) P(n\p»:H(l—g): I (-H=1 (-1

2 a0 et
D1 Dk
) u(d)
=P S MYy (o).
P1- Dk 4P
Di Fi

Using this we can write

Zu ( ) Zu

d|n

-z ﬁz

d|p1-pr pild
:721 np; Z M (take h s.t. d =h-p;)
pi|n d‘Pl‘ Pk
_ Z h;p’ Z M (as p(d) = (—1) - p(h))
piln ? h‘m Zpk
Inp
=y ?P(n \p) (by (95))
pln
- ox ™) (s P(n\p) < 1)
pln

= O(loglogn) (by Lemma 3C.1). A
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Now we are ready to find the asymptotic behavior of a sum very similar
to that in Lemma 3C.1. Instead of summing over all prime divisors of n
we now sum over all positive divisors of n. Notice also that the proof does
not only use the result of Lemma 3C.1 but also extends the idea used in
its proof.

LEmMma 3C.3.
(96) %: l%d — 0((loglogn)?).

ProOF. By standard infinite series arguments,

oo

. 00 .
ij]_l < Z 2].]_1 < 00
j=1 j=1

and so
2 J
By (60), we have that
n n
a,l(ﬁ) = O(loglog E) = O(loglogn),

and by Lemma 3C.1, we have that

1
Z % = O(loglogn).

pln

If p is a prime number that divides n and j > 0 is such that p/ | n but
P’ n, we write p/|| n.
We are now ready to prove our result: If d = pgil .

. pf , then
Ind = 1npgi1 + -+ lnpgzs,
and so if we write all numerators of the sum
Ind

d|n

as sums of logarithms of powers of prime numbers, then we have the sum
of fractions with numerator the logarithm of a power of a prime number,

say p*, and denominator a divisor of n, that is a multiple of p*.

Example. Take n = p;p3, then

3 Ind _ Inpy . Inp, . In(p1p2) n Inp3 n In(p1p3)

= d P2 P p1D2 p3 P1P3
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In In Inp; +1n Inp2 Inp; + lnp?
_ D2 + D1 + P1 D2 4 1272 + P . D3
D2 Y41 pip2 D2 p1ps
In In In In In Inp2 Inp?
:( 101+ plJr p;)+( 172Jr p2+ 1272+ pg)
n pip2 p1ps D2 p1p2 b3 p1p3

In 1 1y 1 1\ Inp2 1
= Ip1(1+—+—2)+ Ilp2(1+—)+ nfz(lJr—)

D1 b2 p3 D2 D1 V) D1
In 1 1 In In p2 1

- p1(1+—+—2)+< P2 ’2)2)(1+—)
D1 P2 Py D2 D3 D1

The most important step is to show that

k
thd = 2 (;fz}.jh)'

d|n pk|n, n| 2
p
(h,p)=

We need three steps to show this. First, if d | n and d = p*h, then
Ind _In pF+1nh
d hpk

1 k
so each of the terms DTI;L occurs. Second each of these terms occurs exatly
. b
prh
(h,p) = 1. Third is that, obviously, no other terms occur. The key fact for
the computation that follows is that if (h,p) =1 and p/|| n then

Ind
once, because can only be genearated from HT with d = p*h because

n n
k| —&h | o
We have
lnd In p*
Ty X (%)

d|n pi||nk=1 h\
(hp) 1

zz@“’)zf

Pl n k=1

B Inp Inp? In pJ
= Z (7+p72++7)

il n d|

—Zlnp(1+—+ o+ ) 1

il n

= O((loglogn)?). 4

(]

1
d

R

)

E\ 3
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LemMA 3C.4. For every = and every j,

1
Z 5= P(j)Inz + O(loglog j).
(.5)=1
k<z
Proor. (Missing September 20, 2005.) -

DerINITION 3C.5. We define uy(r) as follows:

1a(r) :{ u(r), i (dr)=1

0, otherwise.
LEMMA 3C.6.
P(j\d
Z M m)Inz Z Md +O (loglogm)
(j,fz)=1 J (r, ﬂ;) 1

PROOF. If q1, ¢qo, ... are all different prime factors of j that do not divide
d, we obtain

g<1;)_12+zq1q2.

qtd

by doing all multiplications on the left hand side of the equality. So by the
Definitions 3C.5 and 3B.2, of u4(r) and P(n \ m) respectively, we have

PN =TT (1~ ) Z“ Z’“‘d

i AT
SO
, pra(r
(97) PG\ )= Y2 1)
rlj

Now the sum is

S LopGhd) = Z malr) e (o7)

J

(G,m)=1 (3,m)=1
]j<w ]j<:c Tl]
pa(r) Z 1
r i
(r,m)=1 (j,m)=1 ']
r<z i<z/r

fa(r) Z 1

(rym)=1 (G,m)=1
r<e i<z/7

<
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which by use of Lemma 3C.4 becomes,

1
= ﬂigr) (P(m) ln% + O(loglog m)) (as Z 2 < 00)
(T;"<l)w=1 r<z
= P(m) 'ud(;) (Inz — Inr) + O(loglogm)
T
o
= P(m) 'ud(;) Inz + O( Md(;) Inr) 4+ O(loglog m)
(r,m)=1 r (rym)=1 r
r<az rla
pa(r) L
=P(m)lnx (T;l 2 + O(Z: 3 Inr) 4+ O(loglogm),
<o =
Inr
but z<: 2= O(1), by (67), so we f{inally obtain
1 . ,ud
Z - -P(G\d)=P(m)lnzx Z —|—O (loglogm).
=1 4 (rym)=1
’J’<w r<z
Lemma 3C.7.
P(j\d)lnj 1
Z M:§ )(In z)? Md +Ologxloglogm)
(j,fz)zl J (r, Tz) 1

Proor. (Missing September 20, 2005.)

3D. Concluding Steps
From the definition of P(n) it is obvious that:
P(a\b)P(b) = P(ab) = P(b\ a)P(a)
2
Let N = 7;— By Theorem 3B.3, we have that

ZL J_Z Z Z %—FO(nlogn-loglogn).

m|n (J m)=1 (k,j)=1
<N k<];77_

Using Lemma 3C.4, this yields

S = m v Pldd) (j)ln%) + O(loglog 7)),
m|n @, Tz;vl

+ O(nlogn -loglogn)

91
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and as
Z Z Z Z (no_1(n)logn)
m|n G,m)=1 m|n (J m)=1
F<N <N
and
O(loglogj) = O(loglog N) = O(loglogn)
We have
Z Zm Z M ( )+ O(no_1(n)logn - loglogn)
m|n @, 23\r 1 ‘7 ‘7
PG\L N
= ZmP(—) Z M In(=) + O(no_1(n)lognloglogn)
o m G J J
n PG\ &), .
Enr(ny B S5 8 S )
J<N <N

+ O(no—1(n)lognloglogn).
Here we can apply Lemmata 3C.6 and 3C.7
n Hn m(r) 1 Hn m(r)
=Y mP(2) (P(m)(lnN)2 3 /r2 — 5PN Y /r2

m|n (r,m)=1 (rym)=1
r<N r<N

+0(log N loglogm) + O(loglog m)) + O(no_1(n)lognloglogn)

meP (m)(2mN)? 3 “”/r”;(r) —mNy2 3 E "/r";(”) +
neNt Nt

n
+0(log nloglogn) ZmP(—) + O(no_1(n)lognloglogn)

m

m|n
Fon /i (T)
meP ((lnN) Z /T72>+
min R

+O(lognloglogn Z m) + O(no_1(n)lognloglogn)

m|n

= g mP(Q) 1P(m)(lnN)2 E Lﬂ;(r) + O(no_1(n)lognloglogn)
m’ \2 T
m|n (rym)=1

Recall that = (r) = (—1)* if 7 is the product of s > 0 distinct primes none
of which divide ﬁ, otherwise p= (r) = 0. If p is prime, p | r and m | n
m &
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and (r,m) = 1 then we have that p | n if and only if p | ™ From this we
m
deduce that p» (1) = pp(r). We can write In N as

m> n m? n m
1nN—1n%—l(2 n2> ln—+1n(n) —ln§—|—21n(z>
So the formula becomes
:meP (ln7+21n< ) u" JrO (nlogn(loglogn)?)
r<N

Note that we have removed the condition (r,m) = 1. This is because if we
have (r,m) # 1, then as m | n we also have (r,n) # 1, so u,(r) = 0.

meP ((ln2) +4(ln2(%)) +4ln ) Z "”
+O(nlogn(10glogn) )
_ %ZmP(%)P(m)(lng)Q ”;1(;) JrO(lnanln%O(l))

mln r<N m|n

+0(nlogn(loglogn)?)
because Inn > In > > 0 (which follows from n > > > 1) and as P(n) < 1
pn (1)
and 7“72 = O(l),

meP Y(Inn —In2)? Zﬂn +O(1oganlnT)
m|n r<N m|n n
+0(nlogn(loglogn)?).

Now by letting d = % and using (96) we have:

n logd 9
Zmloga—nz p] = O(n(loglogn)~),

m|n d|n
and as
1nanP( Z 'u" O(logn -no_1(n)),
m|n r<N

we conclude that

ZL =3 ZmP )(Inn)? Z ,un +O (nlogn(loglogn)?).

m\n r<N
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We can extend the sum on r to oo, since by (59) (or [3], Theorem 315),
we have

d(n) = Zl = 0(n®) for all positive e

m|n
and
1 1 1
Dmd FE Dy omd sty my
mln r>N mn r>1 mln r>N
m<y/n m>\/n
=Y Yt Y mo) (b (69))
m”;‘\"/; r>1 mﬂ;‘:};
1 2
= Z m;ﬁ+ Z mO(%) (N:%)
meva v
=Y mom+ Y moQ)  (asm>/n)
v v
=0(VnY_ 1)+0( > m)
m|n mln

m>/m

=02 +0(n Z %) (by (59) and reversing the sum)

mln

m>\/n
=0t +O(Z= 3 1)
m|n

= O(n%+e) (using (59) again).

So, as by standard calculus arguments (Inn)2 - nz*¢ = O(n), we have

9 Y%

Y
= 2 mP( )P Y A2 O logn(loglogn)).

m|n r>1

Now the basic formula we will need is

o XEP-T0-5) - R0 5)
pln

r>1 pin p
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This can be seen as follows,

L % = H(1 —p = H(l —p % H(l —p~?) (by Theorem 2D.7)

@ pin pln
=10+ ma@p™ + @) + . ) [[(1 =272
P pln
= z:,un(r)r*2 H(l —p?) (by Theorem 2D.8)
r=1 pln

see [3] §17.2, §17.4, §17.5
It remains to evaluate

> mP()P(m),

m|n

but this is a multiplicative function. To see this take a, b such that (a,b) =
1. If my | a, and mo | b, then (mi,m2) = 1 and mims runs through all
positive divisors of ab. Since ¢(n) is multiplicative by Theorem 2B.9, we

also have that P(n) = is multiplicative, so as (—, —

mi1 Mo
P( ab :p(i p b
mimso mq mo
So
Z mP(a—b)P(m) = Z mymaP( ab )P (mims)
m mimso
m|ab :;\‘Z
= 3 muma P P2 P ) Plima)
mila m1 ma
molb

- Z mlp(mil)P(ml) Z mgP(n%)P(mz).

mila m2|b

So it suffices to do the evaluation when n = p*:

S mpypim = Y p 00

-
w0 oer PV
2
= > P o) e (- 2)
0<j<k
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(RS )

p_1|:p_1pk+1_1 1+pk:|
» +

p p—1 p
:p—l{p’““w’“}:pkp—lerl:pkpz—l
P p P P p

1
_ .k
(1= )

So for n = p1*1 -k, we get

S PPl = pi ot (1= ) (1 )

Yl
m|n
S (=
p2

pln

(98) becomes by use of (99):
T 1 n 6 151
SoL7) = g Y mP (P 5 ] (1- ?>

m|n pln
+0(nlogn(loglogn)?)
1, 1\ 6 141
= JI(1- 5) - =110 - )
pln pln
+0(nlogn(loglogn)?).

So finally

3
Zng = —Zn(lnn)2 + O(nlogn(loglogn)?).
Yy T
And by means of Corollary 3A.8, we get Theorem 3A.5:

S(n) = %(lnn)2 + O(log n(loglogn)?).

Remarks

It is very interesting to reproduce some remarks and further references
from [1] and [10].
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The metric theory of continued fractions has been established by studies
of Gauss, Lévy, Khinchin, Kuzmin Wirsing and Babenko. However these
results are not of much help with the discrete counterpart of the contin-
ued fraction algorithm, i.e. the Euclidean algorithm for positive integers,
since rational inputs have measure zero. The standard Euclidean algo-
rithm was first discussed independently by Heilbronn [4] and Dixon [1970,
1971]. While Heilbronn used combinatorial methods, Dixon used probabil-
ity. Much later Hensley [1992] showed that the number of division steps
done by the Euclidean algorithm over all pairs (m,n) with0 <m <n < zis
asymptotically normally distributed, with mean close to 12(log 2)7 2 log z.

Plankensteiner [1970] counted the number of pairs (m,n) for which the
Euclidean Algorithm takes k steps.

A quite different approach, that can deal with many euclidean-like algo-
rithms and gives also, apart from the mean value, the moments of order k
was proposed by Vallé [12].






APPENDIX: MORE ON H-REPRESENTATIONS

We have already defined what an H-representation is (recall Definition 3A.6)
and we have used H-representations in Theorem 3A.7. Here we will inves-
tigate some further aspects of the notion of an H-representation.

1
10<™ <= and
n 2

Qr(q27 L i) 1)
QT+1(q17 <oy, 1)

m
g:/oaqlaQQv"' 7Q7‘71/:

then by (79), we have ¢1 > 1.
Let d = (m,n). Using Theorem 1D.4 we obtainn = d-Q,+1(q1,- .- ,qr, 1).
On the other hand,

Qr(qry s ,(I2aQ1)
Qr—‘,—l(qla s 5 dr, 1)’

/Ovlaqh"- ,Q2aCI1/:

thus if we multiply both the numerator and denominator of the fraction
with d, we have that

/

m
/0717%“3"' 7Q27(J1/=;

and from Theorem 1D.4, it follows that (m,n) = (m/,n) = d.

1
As0 < ———— <1, wehave 1 < /1,¢p,... ,G2,q1/ < 2. The
/q’r‘7"' a1127(h/ 1
equality would hold if and only if » =1, ¢, = 1, that is if m_ /1,1/ = 2
n

/!

1 m
which is impossible from the hypothesis. Hence 3 < —< 1L
n
In this way we establish a 1-1 correspondence m < m’ between the

1 1
natural numbers in the open intervals (0, §n) and (in, n).

m=n-/0,q1,...,q-,1/, m' =n-/0,1,q¢m,...,q1/, q >1
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H-representations can be described through two parallel recursions, the
one going up and the other down.

l o
{m,r} - {%7037 u

.

and recursively, if
{m, i} < {z;, 25, 95,95}
then
{m,j — 1} = {yj. qj2 + vy} 25 — qyy5, 25}
The basic remark is that we actually have two pairs

{25, ={yj1 +gzj_1, 21}
{191} ={q1, 1}

and

@ 10} = {2 + v}, 2}
{2y, 9.} = {d. d}

that can be constructed recursively independent of each other. The idea is
to “entangle” two recursions -one going down and another going up- in one

quadruple. In this way we split the “information” about the ¢;s occurring
!/

. . . . m m' .
in the continued fraction representation of — and — in two parts:
n n

7_:/07(1‘]""‘7(11/’ Q1>1

7/:/07(]]'4*1"" 7q’l"a1/'

!/

m

The construction of {z;,y;} parallels the continued fraction process for —
n

and the construction of {z7,y’} parallels the continued fraction process for
m

If we write down the Euclidean algorithm for the pair {n,m} and the
/

Euclidean Algorithm for the pair {%, %} we have:
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!/

— n_l m !
n=q-m+nr g@l— -F—H“l
m=gqs-T1+7T2 F:qr-r’1+r’2
rL=(g3 T2 +T3 Ty =qro1 Ty 1y

Tr_3=(qp_1 Tr—2+d 7“,/“,3 =q3 '7“7/«72 +7“;n,1
Tr—2=¢r-d+d r;72:q2'r;71+d
d=1-d+0 r;_lqu-d_l,_()

this gives a very practical algorithm that allows us to compute H-representations
even by hand and bears great similarity to the algorithm Bezout introduced
to express the ged of two numbers as their linear combination.

n=gq -mtn
n=q(g-ri+mr)+r = (qg+1) r+(q)r
n=_(qg2+1)(gz-ro+7rs)+ (q1)r2 = (q1g293 + @3 + q1) - 72 + (192 + 1)73)

{m71} A {q17m7r171}:{r;_l,m,T;,?l}
{m,2} {nige +1,r1,q1,72}
{m,3} =  {q1g2g3 + 1 +q2,72,q1g2 + 1,73}
n—m'

. m’ m/
{m,r} = {jarr—la Tarr} = {77‘13 r,17d}

Example. Take n = 720, m = 153 then
2= 0,4,1,2,2,1,1/
n

sor =5 and

m’ 423
— = 1,1,2,2,1,4) = —
n /Oa ) by Sy Sy a/ 720

from which we get m’ =423, d = (m,n) = (m’,n) =9
The continued fraction process (Euclidean algorithm only the two last
divisions differ slightly) for the pairs {n,m}, {n,m'} and {4, -} is:
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720=4-153+108 | 720 =1-4234297 | 80 =1-47+ 33
153 =1-108+45 |423=1-2974126 (47=1-33+14
108 =2-45+18 297=2-1264+45 |33=2-1445
45 =2-18+9 126 =2-45+ 36 14=2-5+14
18 =1-9+9 45 =1-36+4+9 5=1-4+41
9=1-940 36 =4-9+0 4=4-140

From this we obtain the H-representations:
720 =4 - 153 + 108
720=4-(1-108 +45)+108 =5-108 +4-45
720=5-(2-45+18)+4-45=14-45+5-18
720=14-(2-1849)+5-18=33-18+14-9
720=33-(1-949)+14-9 =47-9+33-9

{m,5} — {47,9,33,9}
{m,4} < {33,18,14,9}
{m,3} < {14,45,5,18}
{m,2} < {5,108,4,45}
{m,1} & {4,153,1,108}



REFERENCES

[1] EriC BACH and JEFFREY SHALLIT, Algorithmic number theory,
MIT Press, Cambridge, MA, USA, 1996.

[2] Louts BRAND, Advanced calculus, 1962 ed., John Wiley and Sons,
1962.

[3] G.H. HARDY, An introduction to the theory of numbers, fifth
ed., Oxford Science Publications, Oxford Press, 1979.

[4] HANS HEILBRONN, On the average length of a class of finite continued
fractions, Number theory and analysis (Turdn P., editor), Plennum
Press, New York, 1969, pp. 87-96.

[5] A.Y. KHINCHIN, Continued fractions, Dover, 1997.

[6] A.C. Yao & D.E. KNUTH, Analysis of the subtractive algorithm
for greatest common divisors, Proc. Nat. Acad. Sci., vol. 72 (1979),
pp. 4720-4722.

[7] DoNaLD E. KNuTH, The art of computer programming,
Addison-Wesley Longman Publishing Co., Inc.Boston, MA, USA, 1997.

[8] SERGE LaNa, Introduction to Diophantine approximations,
second ed., Springer-Verlag, New York, 1995.

[9] W. NARKIEWICZ, Number theory, World Scientific, 1983.

[10] F. PHILIPPE, V. BRIGITTE, and V. ILAN, Continued fractions from
euclid to the present day, 2000.

[11] JoE ROBERTS, Elementary number theory; a problem-
oriented approach, the MIT Press, 1978.

[12] BRIGITTE VALLE, Dynamical analysis of a class of euclidean algo-
rithms, Theor. Comput. Sci., vol. 297 (2003), no. 1-3, pp. 447-486.






