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Abstract
Our work deals with the important problem
of globally characterizing truthful mechanisms
where players have multi-parameter valuations like
scheduling unrelated machines or combinatorial
auctions. Very few mechanisms are known for
these multi-parameter settings and the question is:
Can we prove that no other truthful mechanisms ex-
ist?
We characterize truthful mechanisms for n players
and 2 tasks for multiple settings: scheduling ure-
lated machines, combinatorial auctions where the
players have additive or subadditive or submodu-
lar valuations and all items have to be allocated: A
truthful mechanism is either task-independet or a
player-grouping minimizer, a new class of mech-
anisms we discover and which generalizes affine
minimizers. We assume decisiveness, strong mono-
tonicity and that the boundaries in which the mech-
anism partitions the input space are continuous
functions.

1 Introduction
Using the power of crowdsourcing and cloud computing to
compute complicated tasks that consist of multiple sub-tasks
is a major challenge in multi-agent systems. When assigning
the tasks to different agents/cloud providers, we have to pro-
vide the agents with the right incentives to truthfully report
the times they need to complete the tasks, and execute the
tasks that are assigned to them.

Combinatorial auctions constitute another important class
of problems. Here multiple items are auctioned simultane-
ously, and we need to motivate the agents to report their true
valuations for the items. Can we characterize all allocation
algorithms that are truthful for these two settings?

Some examples of truthful mechanisms are Dictatorships,
the Vickrey Auction, which maximizes the welfare of the
players, Affine maximizers(/minimizers), which maximize a
weighted welfare of the players (there is an additive weight
for each outcome and a positive weight for each player),
Threshold mechanisms, which allocate each item “almost in-
dependently”. Some of the most famous results in microeco-

nomics like the Gibbard-Sattherwhaite theorem, Arrow’s the-
orem [Kenneth, 1951] and the Roberts’ theorem [Roberts,
1979] provide characterizations of truthful mechanisms.

Fifteen years ago Nisan and Ronen posed their famous –
still open– question about the approximability of the opti-
mum makespan in unrelated machine scheduling by truth-
ful scheduling mechanisms [Nisan and Ronen, 2001]. In
this strategic version of the unrelated machines problem, we
are given n machines and m tasks, and the machines are
owned by selfish agents, each of them holding the vector
ti = (tij)

m
j=1 of running times (costs) on his machine i as pri-

vate information. A scheduling mechanism consists of an al-
location algorithm, and a payment scheme (p1, . . . , pn).Hav-
ing received the bid vectors t′i for the costs from the respec-
tive agents, the matrix t′ is used as input of the allocation
algorithm, and the payments to each agent are calculated ac-
cording to the payment scheme. The utility of player i is then
pi − costi, where costi is defined as the total running time
of the received jobs on machine i, i.e., the finish time of the
machine. Note that for each player, the costs incurred from
the different tasks are additive. A similar problem to unre-
lated scheduling is that of combinatorial auctions (CAs) with
additive bidder valuations: we get a model equivalent to addi-
tive CAs by assuming negative values of tij , and leaving the
scheduling model unchanged otherwise.

We are interested in truthful mechanisms, where bidding
t′i = ti is a dominant strategy for every agent. It is
well known that weak monotonicity (WMON) of the alloca-
tion function, is necessary and sufficient for truthful imple-
mentability(see [Saks and Yu, 2005; Archer and Kleinberg,
2008]). Thus, the problem boils down to searching for mono-
tone allocation algorithms for unrelated scheduling.

While monotonicity characterized truthful mechanisms
well in the (single-parameter) related machines case ([Epstein
et al., 2013] and references therein), it is much more difficult
to directly exploit it in multi-parameter settings like unrelated
scheduling. A different approach is to improve our under-
standing by investigating the global structure of WMON al-
locations. To this end we strive for global, closed form char-
acterizations. Even though it seems extremely hard to pro-
vide a complete characterization for the original problem, at-
tempts to characterize restricted, in some way purified classes
of WMON mechanisms prove to be very useful: they develop
insight, while new types of allocations might be discovered



along the way. The question we pose is: Do we encounter
very complex mechanisms (convincing that any attempt for a
complete characterization is doomed to failure); or do mono-
tone allocations remain managable (at least) in the restricted
classes?

In this paper we assume strong monotonicity (SMON), a
condition that parallels Arrow’s Independence of Irrelevant
Alternatives (IIA) condition, and which is the strict version
of the WMON property (see Definition 3). We already knew
from[Mu’alem and Schapira, 2007] that SMON mechanims
can only approximate the makespan by factor min(m,n).

We completely characterize SMON mechanisms for two
tasks, and at the same time identify a new class of monotone
allocations. Our characterization also implies a characteriza-
tion of essentialy all superdomains of additive valuations (like
submodular, subadditive or superadditive valuations), by ap-
plying the black box reduction introduced in [Vidali, 2011].

Related work. Characterizations by weak monotonic-
ity [Myerson, 1981; Saks and Yu, 2005; Gui et al., 2005;
Archer and Kleinberg, 2008; Frongillo and Kash, 2012], and
cycle monotonicity [Rochet, 1987] describe truthfully imple-
mentable allocations in a local fashion.

Complete characterizations, of implementable allocations
describe them in a global fashion. The most important re-
sult of this type is due to Roberts who showed that for unre-
stricted domains the only implementable social choice rules
are affine maximizers [Roberts, 1979], a generalization of
VCG mechanisms. However, the requirement of unrestricted
valuations does not apply to most of the realistic setups with
richer structure. Characterizations for domains with high eco-
nomic importance like combinatorial auctions or the schedul-
ing domain seem very hard to obtain, even with additional
restrictions. Lavi et al. [Lavi et al., 2003] showed that assum-
ing a property analogous to SMON (IIA), the only truthful
mechanisms in order based domains are so-called ”almost-
” affine maximizers. Dobzinski and Nisan characterize the
only scalable multi-unit auctions for 2 items and 2 players
with better than 2-approximation of the welfare, and term
these triage auctions [Dobzinski and Nisan, 2011]. Ash-
lagi and Serizawa characterize truthful, individually rational
multi-unit auctions, where each bidder receives at most one
item. They assume anonymity in welfare, and show that the
only allocation rule is the VCG allocation [Ashlagi and Ser-
izawa, 2012].

The characterizations we know for the case of n play-
ers, either concern domains where SMON can be assumed
without loss of generality (unrestricted domain or pub-
lic projects[Roberts, 1979; Papadimitriou et al., 2008]) or
put additional restrictions: [Lavi et al., 2003; Dobzinski
and Sundararajan, 2008; Lavi et al., 2009] assume SMON
(and decisiveness), [Dobzinski and Sundararajan, 2008;
Dobzinski and Nisan, 2011] assume continuity and scalabil-
ity or [Christodoulou and Kovács, 2011] substitute truthful-
ness with envy-freeness. All these characterizations, even
under the extra assumptions are complicated and of huge
value. The only complete characterization results for ad-
ditive bidders in the multi-parameter setting are for two play-

ers [Dobzinski and Sundararajan, 2008; Christodoulou et al.,
2008]. These characterizations involve affine minimizers, or
threshold mechanisms, or a combination of these.1 We define
these allocation rules next.

Definition 1 (affine minimizer). An allocation function A
is an affine minimizer if there exist positive multiplicative
constants λi for each player i, and additive constants ca
one for each allocation a, such that for every input matrix
t = {tij}n×m the allocation A(t) = {aij}n×m minimizes∑n
i=1

∑m
j=1 λi · aij · tij + ca (where aij is 1 if player i gets

task j and 0 otherwise).

Threshold allocations are exactly those that admit addi-
tive payment functions over the received tasks/items [Vidali,
2009]. Restricted to SMON mechanisms, they coincide (as-
suming proper tie-breaking) with task-independent mecha-
nisms, that allocate each task by an arbitrary monotone single
item allocation. Single item mechanisms were characterized
as virtual utility maximizers in [Mishra and Quadir, 2012].

Our contribution. 1. We started trying to extend the char-
acterization for 2 players [Christodoulou et al., 2008] iden-
tify a so far unknown monotone allocation rule generalizing
affine minimizers, that we call player-grouping minimizer. A
player-grouping minimizer partitions the set of players, and
always allocates all tasks within one subset of the partition
(called group) by some affine minimizer. Between any two
groups of players, preferences are decided by minimizing ar-
bitrary fixed increasing functions of the objective values of
the groups:

Definition 2 (player-grouping minimizer). Let {Ng}rg=1 be
a partition of the set of players into r groups, with at least
two players in each group. For each 1 ≤ g ≤ r let
Φg : (−∞, Cg) → R be an increasing continuous bijec-
tion2 and Ag be an affine minimizer over the players of group
g. Within each group the affine minimizer Ag decides, which
players (would) receive the tasks in that group. For given
bids ti of the players in group g, let Optg denote the objec-
tive value of Ag.3 Group s receives all the tasks, allocated
according to As, if Φs(Opts) = ming Φg(Optg) (assuming
some consistent tie-breaking rule).

Example 1. The allocation for n = 4 and m = 2, that gives
the tasks to the players who provide the minimum of the ex-
pressions t11 + t12, t11 + 5t22, 5t21 + t12, 5t21 + 5t22, and
(min{t31 + t32 + 3, t31 + t42, t41 + t32 − 1, t41 + t42})3

is a grouping minimizer. If ties are broken by a fixed or-
der of these eight possible allocations, then it is an SMON
grouping minimizer.

2. We characterize SMON mechanisms for two tasks or items
as either task-independent mechanisms or player-grouping
minimizers:

1In CAs, affine maximizers become affine minimizers.
2The Cg ∈ R ∪ {+∞} with Cg being +∞ for at least one g;

this is needed for the tasks to be always allocated.
3Optg = minag

∑
i

∑
j λitija

g
ij + cag , where allocations ag

give all tasks to group g.
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Figure 1: The allocations to a single player depending on
his own 2-dimensional bid vector, partitions the bid-space ac-
cording to one of these shapes.

Theorem 1. Every continuous decisive SMON mechanism
for allocating two tasks or items, with additive bidder val-
uations and tij ∈ R, is either a task-independent mechanism,
or a grouping minimizer (if the grouping minimizer is onto4,
then it is an affine minimizer).

Since monotone allocations for two players are essen-
tially SMON (with an appropriate tie-breaking rule), for two
tasks our result generalizes the 2-player characterization in
[Christodoulou et al., 2008]. Moreover, grouping minimizers
are very similar to virtual utility maximizers for a single item
[Mishra and Quadir, 2012].
3. We derive an elegant lemma (Lemma 2) that turns out to
be of ’universal’ use for the SMON problem. For fixed bids
t−i, of all other players, the allocations to a single player i
depending on his own 2-dimensional bid vector ti, partition
the bid-space according to one of the shapes in Figure 1 (due
to WMON). The positions of the boundary lines in these fig-
ures correspond to the (differences of the) payments to player
i for the different allocations. We investigate these bound-
ary positions (i.e. the truthful payments), as functions of the
other players’ bids.5 For SMON mechanisms, Lemma 2 im-
plies the linearity of these payment functions in ’most’ cases.
We prove that linearity of all boundary functions results in
the mechanism being an affine minimizer. The only excep-
tions where linearity needs not hold, imply either a task inde-
pendent mechanism or a boundary between different player-
groups in a grouping minimizer (see Figures 2 and 3).

Our technical assumptions are decisiveness, continuity of
the payment functions, and that the costs tij can take arbitrary
real values.6 For a discussion on these, and some examples
of degenerate allocation rules, see the Appendix.

Preliminaries. The following notation and observations
apply to any number of tasks. Since we treat the two-tasks
case in the paper, we will illustrate these notions for m = 2.
For a more detailed treatment see, e.g., [Christodoulou et al.,
2008; Vidali, 2009].

An allocation matrix is a = (a1, a2, . . . , an), where ak is
the binary allocation vector of player k.We also use α, α′ . . .

4I.e. every allocation occurs for at least one input t.
5Truthful payments are determined by the allocation function.
6Note that similar assumptions are made in [Dobzinski and

Nisan, 2011; Dobzinski and Sundararajan, 2008; Christodoulou et
al., 2008; Mishra and Quadir, 2012].

etc. to denote some arbitrarym-dimensional allocation vector
(for two tasks, ak ∈ {(00), (01), (10), (11)}). For two tasks,
aik denotes the allocation giving the first task to player i and
the second to player k (mind the difference to aij , which is a
single bit).

The bid matrix of all players except for player k, is denoted
by t−k, whereas t−ik denotes the bid matrix of all players ex-
cept for players i and k. For fixed t−k, the allocation regions
Rkα = {tk | ak(tk, t−k) = α} ⊂ Rm for all possible α, parti-
tion the bid space Rm of player k into at most 2m parts.
Definition 3. An allocation function A satisfies SMON if
A(tk, t−k) = a, and A(t′k, t−k) = a′, where a 6= a′, im-
ply (ak − a′k)(tk − t′k) < 0 (≤ 0).

For WMON allocations the allocation regions of any player
must have a special geometric shape: the boundary between
any two regions Rkα and Rkα′ (if it exists) is on a hyperplane

(α− α′) · tk = fkα:α′ ,

where the functions fkα:α′ , that determine these boundary
positions are defined as follows (see [Vidali, 2009]): In a
truthful mechanism, the payment of player k depends on
t−k and on ak. Let pkak(t−k) denote this payment. Then
fkα:α′ = pkα(t−k) − pkα′(t−k). In general for some t−k some
of the allocation areas Rα might disappear. We make the as-
sumption that the allocation figures are complete (all the 2m

regions are always nonempty), i.e., the allocation is decisive.
Thus, for WMON allocations of two tasks, the allocation of
player k as a function of (tk1, tk2) has a geometrical repre-
sentation of one of three possible shapes (see Figure 1). For
given fixed t−k, we call this geometric representation the (al-
location) figure of player k.

In Section 2.1 we investigate how the positions fkα:α′ of
a player’s boundaries change as a function of t−k. We will
show that this change is linear in t−k with only a few excep-
tions. For fixed t−ik the boundary fkα:α′ is a function of the
bid ti. We assume the continuity of fkα:α′(ti) for any fixed
t−ik. Most of the time, w.l.o.g. we consider the figure and
boundaries of the first player. In this case, for k = 1, we omit
the superscript in fk, Rk, etc.

In the rest of the section we summarize further implications
of the SMON property, the strict version of WMON. See the
Appendix for omitted proofs. If an allocation rule A(t) is
SMON, then the allocation of all players is constant in the in-
terior of any region Rkα (otherwise, changing tk would result
in changing a to a′, with ak = a′k, contradicting SMON. We
denote by fka:a′(t−k) the boundary between allocations a, a′
(these describe the allocation of all players, not just of player
k) for every t−k for which such a boundary exists in the fig-
ure of player k. Next we state a crucial elementary property
of continuous SMON mechanisms:
(?) For fixed bids of the other players, the boundary fka:a′ in
the allocation figure of player k, considered as a function of
the bids ti of any particular player i 6= k depends only on
(a′i−ai) · ti, by some strictly increasing continuous function.
If a′i = ai then the boundary position is independent of ti.
For example, let a = (11, 00, 00), and a′ = (01, 10, 00),
and t3 be fixed; then fa:a′(t2) = ϕ(t21), for a nonde-
creasing real function ϕ. Similarly, if a = (10, 01, 00) and
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Figure 2: Types of quasi-independent allocation figures of
player 1. Here j = i is allowed. Only in type (1) can F or G
be locally nonlinear.

a′ = (01, 10, 00), then fa:a′ = ψ(t21 − t22) for some nonde-
creasing function ψ. The property (?) is implied by Lemma 1,
and Observation 1 below:
Lemma 1. [increasing boundaries] Let t−1i be fixed, and
G ⊂ Rm a connected set. Assume that the boundary fa:a′
exists for all ti ∈ G. For every ti, ti ∈ G it holds that if
(a′i − ai) · ti < (a′i − ai) · ti, then fa:a′(ti) ≤ fa:a′(ti).
Corollary 1. Let S be a subset of the tasks. If aij = a′ij for
all j ∈ S, then fa:a′(ti) = fa:a′(ti) whenever ti and ti differ
only on tasks in S.

For example, let a = (11, 00, 00), and a′ = (01, 10, 00).
By the lemma (for i = 2), f11:01 is increasing in t21. The
corollary says, that f11:01 is a function of only t21. S con-
sists of task j = 2, because the allocation of this task to
player 2 remains the same a22 = a′22 = 0. Consider t2 and
t2 bids such that t21 = t21. If f11:01(t2) < f11:01(t′2) were
the case, then by the lemma, f11:01 would have a jump of at
least f11:01(t′2) − f11:01(t′2) in t21. However, f11:01(t21) is
continuous by assumption. We conclude the subsection with
a couple of simple observations that hold in the case of con-
tinuous boundary functions.
Observation 1. (a) [boundary points] Let t−1 = (ti, t−1i).

If t1 is a point on the boundary fa:a′(t−1), where the
allocations ai and a′i are different, then for t−i =
(t1, t−1i) the bid ti is a point on the boundary
f ia:a′(t−i).

(b) [inverse boundaries] Let t−1i be fixed. If for some
monotone continuous univariate function fa:a′(ti) =
ϕ((a′i − ai) · ti), then f ia′:a(t1) = ϕ−1((a1 − a′1) · t1).

(c) [strictly increasing boundaries] Let t−1i be fixed, and
G ⊂ Rm a connected set. Assume that the bound-
ary fa:a′ exists for all ti ∈ G. The function fa:a′(ti) is
strictly increasing in (a′i − ai) · ti over ti ∈ G.

2 Characterization
In this section we sketch the proof of Theorem 1. The Ap-
pendix contains the detailed proofs. Figures 2 and 3 show
the possible allocation figures of player 1, w.r.t. the depen-
dence of boundaries on other players’ bids. The player in-
dices marking the four regions indicate the players who get
the tasks in the respective region.7 In every allocation fig-
ure, task 1 is either given to the same player in R01 and in

7As an example, consider Figure 2 (1). Here player i gets task 1
in regions R01 and R00; and player j gets task 2 in R00 and R10.

R00, or to two different players (and similarly for task 2).
Accordingly, the boundaries where task 1 changes owner are
either only the vertical boundaries (like in types (1) to (6)),
or the vertical boundaries and f01:00 where two other players
exchange the task among each other. Combining all possibil-
ities for both tasks, we obtain the depicted cases.

Definition 4. We call the allocations in an allocation figure
quasi-independent, if the same player receives task 1 in R01

and inR00, and the same (possibly other) player receives task
2 in R10 and in R00.

Figures 2 and 3 show all possible quasi-independent and
non quasi-independent allocations, respectively, up to sym-
metry. Observe that for a particular boundary (?) only im-
plies that it(s position) is a multivariate function, monotone
in each variable. (E.g., in case (6) in Figure 3 f10:00 is some
function f(ti1, tj2, tk2).) However, whenever different other
boundaries depend on these different variables, it must be
the case that the multivariate function is a so called addi-
tively separable function as appears in the figure (e.g., in
(6), if only ti1 is increased (locally), then only the two ver-
tical boundaries move, and f() as a function of ti1 is nec-
essarily of the form F (ti1) + C(tj2, tk2) for some function
F ; by similar considerations, G and H functions exist s.t.
f = F (ti1)−G(tj2) +H(tk2) + C).

2.1 Local linearity results
The main theorems of this subsection show the linear-
ity of different boundary functions fα:α′(ti). Since task-
independent allocations, that are in general nonlinear, have
“crossing” figures (see Figure 1 (b)), it will be important to
distinguish two types of allocation figures:

Definition 5. For fixed t−k, the allocation figure of k is cross-
ing, if fk11:01 = fk10:00, and fk11:10 = fk01:00.Otherwise we call
the figure non-crossing.

Mechanisms with only crossing allocation figures are task-
independent. The boundary functions fα:α′ of such mecha-
nisms need not be linear, as they indicate the critical values
for getting the task in arbitrary monotone single-task alloca-
tions. In what follows, we show that if the mechanism is
onto, the converse also holds: if the mechanism has an alloca-
tion figure (for some k and t−k) that is non-crossing, then all
boundary functions of the mechanism must be linear. How-
ever, if the mechanism is not onto, that is, certain allocations
aij never occur, then even complete (decisive) non-crossing
allocation figures might change by non-linear functions. The
resulting mechanisms, which we named (player) grouping
minimizers, constitute a generalization of affine minimizers.
The main reason for enforced linearity of the boundaries is
given in the following basic lemma. Namely, whenever these
boundaries are additive separable functions of at least two
variables, and so are their inverse boundaries (on another

By property (?), the position f11:01 of the boundary between R11

and R01 is given by an increasing function of ti1, that we denote by
F (ti1). Similarly, the horizontal boundary position is determined
by an increasing function G(tj2). If the figure has a shape like in
Figure 2 (2), then the slanted boundary has the equation t11− t12 =
F (ti1)−G(tj2).
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Figure 3: Non-quasi-independent allocation figures of player
1. Here the shapes of the figures are arbitrary. The letters in-
dicate the players who receive the two tasks in the respective
regions; i, j, k, ` 6= 1 denote different players. F and G are
linear, and only in (8) and (9) can H be locally nonlinear.

player’s figure), we encounter a situation that fulfil the condi-
tions of the lemma. The conditions imply that if the functions
β and ψ are monotone, then for any small enough ∆, the
second curve is a parallel translation of the first one both in
vertical and in horizontal direction. This is possible only if
the curve is a straight line (α and ϕ are linear).

Lemma 2. Assume that for strictly monotone continuous real
functions α, β, ϕ, and ψ, for every (x, y, z) ∈ G for an open
set G ⊆ R3, it holds that
(y = α(x) + β(z)) ⇔ (x = ϕ(y) + ψ(z).) Moreover, we
assume that an open neighborhood of (x, z) pairs exists for
which (x, α(x) + β(z), z) ∈ G. Then

(a) α and ϕ are linear functions;

(b) α and ϕ are both increasing or both decreasing, and
exactly one of β and ψ is increasing;

(c) if β and ψ are also linear functions with slopes λβ and
λψ, then the slopes λa of α and λϕ of ϕ satisfy λα =

− λβ
λψ
, and λϕ = −λψλβ .

Definition 6. The real function ϕ : R→ R is locally linear in
point x, if a δ > 0 exists such that ϕ is linear in the interval
(x− δ, x+ δ); ϕ is locally non-linear in x, if ϕ is not a linear
function in any open neighborhood of x.

With the help of Lemma 2, in Theorems 2 and 3 we show
the local linearity of the boundary functions of region R11

(F and G) and also of R00 (H) in most cases. The excep-
tional cases, when linearity in general does not hold, are case
(1) for functions F and G, which is the allocation of a task-
independent mechanism, and cases (8) and (9) for H which
are typical allocations of grouping minimizers. Notice that
(8), (9) are exactly the allocation types, where in region R00

the tasks are given only to players who do not get a job in any
other region.

Theorem 2. If an allocation figure of player 1 is constant (i.e.
the allocations of all players in each region are constant) for

some connected open set G ⊂ R(n−1)×2 of t−1 values, then
the function F (resp. G) is locally linear in every point ti1
(resp. ti2 or tj2) in the projection of G, or case (1) of Figure 2
holds over G.
Theorem 3. If an allocation figure of player 1 is constant
for some connected open set G ⊂ R(n−1)×2 of t−1 values,
then the function H() (when defined) is locally linear in each
variable of H, in every point in the corresponding projection
of G, or else one of the cases (8) or (9) in Figure 3 holds.

2.2 Global linearity results
Next, we focus on the functions F andG.We prove that local
linearity extends to global linearity of these functions. More
precisely, the functions F (ti1) for all i 6= 1 are uniquely de-
termined with domain R (unless the allocation ai1 does not
occur at all), and the same holds for G(ti2). Moreover, they
prove to be linear, unless the mechanism is task-independent.
It turns out that the requirement of Theorem 2 to have con-
stant allocations in all the four regions is not necessary, con-
cerning the functions F and G. The next observation extends
Corollary 1 to the case when other players’ bids are not fixed.
Observation 2. Let t−1 = (t2, t3, . . . , tn) and t′−1 =
(t′2, t

′
3, . . . , t

′
n), so that ti1 = t′i1. If both boundaries

fa11:ai1(t−1) and fa11:ai1(t′−1) exist, then they are equal.

From now on, we can use F 1
i (ti1) and G1

i (ti2) (in general
F ki (ti1) and Gki (ti2)) to denote the over their whole domain
uniquely determined boundary functions of a mechanism. We
will omit the superscript 1 whenever we consider the alloca-
tion of player 1. We omit the subscript i,when it is clear from
the argument ti1 or ti2. We prove that if the mechanism is not
task-independent, these functions are linear and have domain
R or ∅. The proof uses the following lemmas:
Lemma 3. If all allocation figures of a single player are
crossing, then all allocation figures of all players are cross-
ing, and therefore the mechanism is task-independent.
Lemma 4. Let ti1 be an interior point of the domain of
F (ti1). If F is locally non-linear in ti1, then the mechanism
is task-independent.
Theorem 4. If the SMON mechanism is not task-
independent, then in the allocation figures of player 1,

(a) every Fi and every Gi function is linear (when defined);
(b) for any fixed t−1 the boundaries of the region R11 are

f11:01 = mini 6=1 Fi(ti1) and f11:10 = mini 6=1Gi(ti2);

(c) the domain of every Fi and every Gi is R or ∅;
(d) if ai1 exists then for any fixed t−1, the tj1 values of the

players j 6= 1, i can be increased so that in R01 the
allocation becomes ai1; in turn, for any fixed t−1, the ti1
can be decreased so that in R01 the allocation becomes
ai1 (and similarly for ti2).

The same holds for the allocation figures of every player k.

2.3 Non task-independent mechanisms
This subsection completes the characterization. We define
the slopes of different boundary functions and settle the con-
nection between them. For ease of exposition, henceforth we



assume that the SMON mechanism we consider is not task-
independent (more precisely, not threshold), and therefore
has at least one non-crossing allocation figure by Lemma 4.
By Theorem 4, the F ki (ti1) and Gki (ti2) functions are linear
over the whole real domain. We introduce the notation:
Notation 1. If the allocation aik ever occurs in the mecha-
nism, then we denote the slope of the linear function F ki (ti1)
by λki,horiz; if the allocation aki occurs, we denote the slope
of the function Gki (ti2) by λki,vert.

Later we will prove that for non task-independent alloca-
tions λki,horiz = λki,vert must hold. Before showing this, it
will be useful to first elaborate on the H functions (see Fig-
ure 3). These will turn out to be linear, unless the players are
partitioned into isolated groups that never share the jobs (in
particular, H is always linear in cases (4)–(7), but not neces-
sarily in cases (8) and (9)). Note also that such H functions
never occur in task-independent allocations. We treat the al-
location figures of player 1, and first examine the dependence
of H functions on the bids of players i, with whom player 1
sometimes shares the jobs, i.e., either of ai1 or a1i occurs as
allocation. This case will also serve as the base case of the
subsequent induction proof of Theorem 6.
Theorem 5. Assume that the allocation ai1 occurs in the
mechanism. Then whenever a boundary function H() of the
region R00 depends on ti1, or ti2, or on ti1 + ti2, this depen-
dence is linear with slope λ1i,horiz. Analogously, if the allo-
cation a1i exists, then for any of these arguments the function
has slope λ1i,vert.
Corollary 2. If for some open set of t−k values, the alloca-
tion to player k is of type (4)–(9) so that H depends on ti1 or
ti2 or on ti1+ti2, then λki,horiz = λki,vert (given that both are
defined).
Lemma 5. For any SMON allocation λki,horiz = λki,vert
(when defined), unless the allocation is task-independent.

Next we define a partition of the players, such that re-
stricted to any set of the partition, the mechanism is an affine
minimizer (given that the tasks are allocated to the respective
set of players).
Definition 7. We define the player-graph with the set of play-
ers [n] as vertices: let players i and j be connected by an edge
if the allocation aij occurs in the mechanism. The players of
the same connected component are called a group.

For neighboring players i and k in the player-graph by
Lemma 5 we can define λki = λki,horiz = λki,vert. Observe
that for these λki values λki = 1/λik is obvious by Observa-
tion 1 (b).
Lemma 6. Assume that the mechanism is not task-
independent and i, j, k is a triangle in the player-graph. Then
λki = λkj · λ

j
i .

The next theorem shows that the constant slopes λki can be
defined for any pair of players within the same group.
Theorem 6. Assume that the mechanism is not task-
independent. For any two players i and k of the same group
there exist constants λki = 1/λik such that in every allocation

figure of player k where the functions F ki , G
k
i appear or H

depends on ti, they depend linearly on ti with slope λki .
Observation 3. If the mechanism is not task-independent,
then for an arbitrary path i0, i1, i2, . . . , it in the player-graph
it holds that λi0it = λi0i1 · λ

i1
i2
· . . . · λit−1

it
.

Corollary 3. For any three players i, j, k of the same group,
λki = λkj · λ

j
i .

Due to the uniqueness and transitivity of the λ values in
non task-independent allocations, we can choose λi = λ1i
to be the multiplicative weight of a player i in the group
of player 1. (We can choose a representative player in each
group to play the role of player 1.) In order to determine the
affine minimizer within a connected group of players com-
pletely, we need additive constants for each allocation to these
players, which we define next.
Lemma 7. Consider w.l.o.g. the connected group of player
1. There exist constants cii and cij for arbitrary members i
and j of the group, such that within this group the mechanism
allocates according to an affine minimizer with multiplicative
constants λ1i and additive constants cii and cij (given that
this group of players receives the tasks).

Clearly, for every connected group g we can choose a rep-
resentative player kg, and determine the multiplicative and
additive constants λkgi , c

ij and cii accordingly. We assume
that k1 = 1. It remains to elaborate on the rules of the alloca-
tion between two different groups of players. LetOptg be the
optimum value of group g, that is Optg = mini,j∈g(λ

kg
i ti1 +

λ
kg
j tj2 + cij). The characterization result (Theorem 1) is now

an immediate corollary of Lemma 8.
Lemma 8. For every connected group g of players, there
exists an increasing continuous function Φg with domain
(−∞, Cg) and lim−∞Φg = −∞ s.t. (optimal players of)
group g with minimum value of Φg(Optg) receive the tasks.
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A Notes on our assumptions and discussion of
the result

Our technical assumptions are decisiveness, continuity of the
payment functions, and that the costs tij can take arbitrary
real values. These assumptions facilitate a fairly compact
characterization result. The following examples illustrate that
such simplicity of the result is unthinkable by admitting either
discontinuities or non-decisive mechanisms, whereas most
probably there would be no gain by such an extension (e.g.,
concerning lower bounds).
1. We require decisiveness. Geometrically this means that all
allocation figures are always complete; in particular, for m =
2 they always have the four allocations regions 00, 10, 01,
and 11.

Definition 8. An allocation function A is decisive, if every
player i, for every fixed bids t−i of the other players and ev-
ery particular allocation α ∈ {0, 1}m has bids ti so that A
allocates him exactly the items in α.

Decisiveness is a natural assumption [Dobzinski and Sun-
dararajan, 2008; Christodoulou et al., 2008]. Without it, it is
easy to define degenerate allocations with arbitrary (increas-
ing) payment functions. An example is an allocation function
where the tasks are bundled, and are always allocated to a
single player.
2. Another assumption we make is that the payments (i.e.,
boundary positions) of the mechanism are continuous func-
tions. This is not as severe an assumption since they are any-
way non-decreasing functions. The following example shows
that without the continuity assumption, unnatural mecha-
nisms exist even for two tasks and two players, that are not
task-independent, threshold or affine minimizers. (In this ex-
ample the allocation figure of player 1 is non-crossing only
for a single bid t2 of player 2):

Example 2. Let n = m = 2, and consider the following
(non-continuous) task-independent mechanism with F (t21)
and G(t22) as vertical and horizontal boundary functions in
the allocation figure of player 1: F (t21) = t21 if t21 ≤ 1 and
F (t21) = t21+1 if t21 > 1. Note that the (vertical) boundary
function has a jump of 1 in t21 = 1. Analogous rule applies
to task 2 and the horizontal boundary.

We will refine the allocation rules by modifying them in
t21 = 1 and/or t22 = 1. Let F (1, t22) = 1 if t22 < 1, and
F (1, t22) = 2 if t22 > 1, (and symmetrically for G(t21, 1).
Finally, if t21 = t22 = 1, then the allocation figure of player
1 is non-crossing with f11:01 = f11:10 = 1, and f10:00 =
f01:00 = 2. Note that every other allocation figure of both
players is crossing.

3. A less natural assumption is that the tij can take pos-
itive and negative values. This assumption was made in
[Christodoulou et al., 2008], and in [Dobzinski and Sun-
dararajan, 2008] (for auctions). Both of these previous re-
sults and this paper suggest the strong conjecture that (even
for more players) task-independent mechanisms are the only
decisive mechanisms when we admit only positive (schedul-
ing) or only negative (auctions) bids.8 Therefore it seems that

8The intuitive explanation is, that if the domain is bounded, then



we would either have to give up decisiveness or possibly ex-
amine only task-independent allocations. We think that we
can learn more about the behaviour of monotone allocations
in general (or, for ’high enough’ bids in the scheduling or
auctions domain) by investigating real bids first. In particu-
lar, note that (as opposed to the other two assumptions) we
do not only restrict, but also extend the class of investigated
allocations.

The following example shows that if the tij bids are not
allowed to take arbitrary real values, then continuous mono-
tone (albeit not strongly monotone) allocations exist that are
not grouping minimizers. The example is for the combinato-
rial auctions domain (t ∈ R−), for m = 2, and n ≥ 3. A very
similar example was given in [Lavi et al., 2003] (see Example
4. there). However, no analogous allocation has been found
for the scheduling domain (moreover, these examples are not
strongly monotone), so that deeper investigation would be in-
teresting. The positive and negative orthants (scheduling vs.
auctions) behave differently, since in both cases the smaller –
or ’larger’ negative – values receive the tasks; that is, we mir-
ror the possible valuations, but not the allocation rules. This
explains why results can be obtained parallel in both settings,
and also, why these can be different.
Example 3. Assume that ti1 + ti2 ≤ tj1 + tj2 ≤ tk1 + tk2 ≤
. . . are the three smallest sums of bids over all players (break
ties by player indices). Let α = −(tk1 + tk2) ≥ 0. The two
jobs are allocated to players i and j, according to an affine
minimizer with cji = cji = α, and cii = cjj = 0. This
mechanism is well-defined, and truthful. Note that for player
i the area tk1 + tk2 < ti1 + ti2 must be part of the region
Ri00. (It is crucial that this area is bounded in the negative
orthant, but not bounded if tij can take positive values.) This
mechanism is onto, but not decisive: as tj approaches tk, the
regionsRi10 andRi01 disappear, and j and k can change roles
without any problem.

A.1 Discussion of the result
The most immediate open question is, whether our result ex-
tends to SMON mechanisms with many tasks. The charac-
terization can be generalized if we make the following strong
assumption: for any two tasks u and v, if two players (ever)
share these tasks in the 2-dimensional projection allocation
obtained by fixing the bids for every other task to some t−uv
matrix, then they also share the tasks given any other fixed
values t′−uv. This property holds for all the mechanisms that
we know, but it is not clear why it can be assumed right away.
We formulate the following strong conjecture:
Conjecture 1. Every continuous decisive SMON mechanism
for allocating m items, with additive bidder valuations and
tij ∈ R, is the product of grouping minimizers and a task-
independent mechanism. That is, the set of tasks M can be
partitioned M = {M0,M1, . . . ,Ms} such that on the tasks
of M0 the mechanism is task-independent (threshold), and
on every other partition Mq it is an arbitrary grouping mini-
mizer.

non-crossing allocation figures become incomplete as soon as the
slanted boundary of the figure “reaches” the border (where tij = 0),
and therefore these mechanisms are inherently non-decisive.
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Figure 4: Illustration to Lemma 1. (a) Allocation figure of
player 1 for ti and for ti; (b) the figure of player i for t1

Another, even more challenging question is, if Lemma 2
can in any way be helpful to gain insight into the nature
of WMON allocations. This could be the case, since the
lemma is based on local properties of the boundary functions,
and similar properties must hold in the WMON case as well
(that the boundary may depend on further other player’s bids
should actually impose just further restrictions). Moreover,
the lemma suggests the intuition, that in order to obtain new
types of WMON allocation rules, we need to find ones where
the boundary functions are not additive separable functions
of the relevant variables.9

B Omitted proofs
Proof of Lemma 1. An intuitive proof of the lemma is the
following (see figure 4). Let m = 2, a = a11 and a′ = ai1,
and consider the boundary f11:01 in the figure of player 1.
Note that ai = (00) and a′i = (10), and (a′i− ai) · ti < (a′i−
ai) ·ti,means ti1 < ti1 in this case. Assume for contradiction
that f11:01(ti) > f11:01(ti). Then there is a t1 ∈ R2 such
that f11:01(ti) < t11 < f11:01(ti), and so that the allocation
for (t1, ti, t−1i) is a11 but for (t1, ti, t−1i) it is ai1. Thus,
ti ∈ Ri00 whereas ti ∈ Ri10 for this t1. A contradiction, since
for monotone allocations no point inRi00 can have smaller ti1
than any point in Ri10.
Proof of Observation 1 (a) is a straightforward consequence
of continuity. (b) is now immediate, since ’being a point on
the boundary’ means fa:a′(ti) = (a1 − a′1) · t1. (c) If a con-
tinuous increasing function is not strictly increasing, then it
is constant over an interval. However, then the inverse func-
tion (which is another boundary function by (b)) would have
a jump, contradicting continuity.
Proof of Lemma 2. We consider an open rectangular set
(x0, x1) × (y0, y1) × (z0, z1) ⊂ G, such that if x ∈ (x0, x1)
and z ∈ (z0, z1) then α(x) + β(z) ∈ (y0, y1). It can be veri-
fied that such a set exists by the condition of the lemma. Since
the functions α, β, ϕ, ψ are strictly monotone and continu-
ous, they are invertible, so the condition of the lemma can
be rewritten as y = ϕ−1(x− ψ(z)) and combining the latter
with (1) we get

α(x) + β(z) = ϕ−1(x− ψ(z)). (2)

Note that here we exploit that y = α(x) + β(z) ∈ (y0, y1).
From the last equation, by fixing z we can see that α and ϕ

9E.g., are not of the form F (ti1) + G(tj2), like in Figure 2 (3),
but of some other H(ti1, tj2).



are either both increasing or both decreasing, which proves
(b). Assume w.l.o.g. that α and ϕ are increasing.

Fix an arbitrary z ∈ (z0, z1). Suppose first that ψ is de-
creasing. By the continuity and monotonicity of ψ, for ev-
ery small enough ∆ > 0 there exists a δ > 0 such that
ψ(z) − ψ(z + δ) = ∆. Moreover, we can choose ∆ > 0
small enough so that also z + δ < z1 holds. Now for an
arbitrary x ∈ (x0, x1 −∆) we have

α(x+ ∆) + β(z) = ϕ−1(x+ ∆− ψ(z))

= ϕ−1(x− ψ(z + δ))

= α(x) + β(z + δ);

where the first and third equality follows from (2), and the
second by the definition of δ. Rearranging the first and the
last terms, we obtain

α(x+ ∆)− α(x) = β(z + δ)− β(z).

Note that the right hand side is constant, but x ∈ (x0, x1−∆)
was arbitrary. Moreover, since (a small) ∆ can be chosen ar-
bitrarily, we showed that the increase of α() is constant for
constant increase of x, independently of x itself. It is easy to
see that such an α() must be linear (e.g., by halving intervals
recursively, the function values of the two endpoints must be
averaged every time. The linearity of ϕ follows analogously.
If ψ is increasing, then the same proof holds with δ < 0.
Observe that if ψ is decreasing, then δ is positive, so β is
increasing (since α is increasing), and vice versa. Finally, as-
sume that β and ψ are linear. Then λβ ·δ = λα ·∆.Moreover,
δ was chosen so that ∆/δ = −λψ. This yields λα = − λβ

λψ
,

and the other statement of (c) follows analogously.
Proof of Theorem 2. We assume an open rectangle T ⊂
G where the conditions hold. Then the result extends to an
arbitrary open set G. Here we give a detailed proof of the
theorem in cases (2) and (9) of Figure 3 as examples for how
to apply Lemma 2 for the linearity of boundary functions.
The other cases can be shown analogously.

In case (2), the line of the (slanted) boundary f10:01 is given
by the equation t11−t12 = F (ti1)−G(tj2), and it is a bound-
ary between allocations a1j and ai1. If we fix a boundary
point t1, then for this t1 the figure of player i has a bound-
ary f i10:00 = f iai1:a1j , and ti is a point of this boundary by
Observation 1 (b). Moreover, the boundary position for i is a
function of the form ti1 = −Gi(t12)+Hi(t11, tj2), for some
monotone increasing functions Gi and Hi. For fixed t̄j2 we
obtain

t12 = −F (ti1) + t11 +G(t̄j2)

m
ti1 = −Gi(t12) +Hi(t11, t̄j2),

and this is valid in some neighborhood of (t11, t12, ti1), since
it is valid on t−1 ∈ T .

We set y := t12, x := ti1, z := t11 and choose
the strictly monotone, continuous functions −F (x), z +
G(t̄j2), −Gi(y), and Hi(z, t̄j2), as α(), β(), ϕ(), and
ψ(z), respectively. Applying the lemma yields that F is lo-
cally linear. For proving the linearity of G we must fix ti1
instead of tj2.

Next, we consider case (9), and the boundary f01:00 =
fai1:ak` . Here we have for some fixed t̄`2

t12 = −F (ti1) +H(tk1, t̄`2)

m
ti1 = −Gi(t12) +Hi(tk1, t̄`2),

and by Lemma 2 the linearity of F follows. In order to prove
the linearity ofG, one needs to consider the boundary f10:00.
Proof of Theorem 3. We prove the theorem for all of
cases (4) – (7). The proofs are again direct applications of
Lemma 2; the proof technique is the same as for Theorem 2.

In case (4) we consider the boundary f10:00 between al-
locations a1i, and aij . For t1 points on the boundary we
have t11 = F (ti1) − G(ti2) + H(tj2) + C. In the figure
of player j this corresponds to the boundary f j01:00, and there
tj2 = −F j(ti1) +Hj(t11, ti2). We fix t̄i2, and obtain

t11 = H(tj2) + F (ti1) + C −G(t̄i2)

m
tj2 = Hj(t11, t̄i2)− F j(ti1);

so H(tj2) is linear.
In case (5), we look at the same boundary f10:00, and

with fixed t̄j2 use the formula for boundary points t11 =
H(ti2) + F (ti1) + C − G(t̄j2). In the figure of player i is
this corresponds to a boundary point on the slanted boundary
f i11:00. For this boundary it holds that ti1+ti2 = Hi(t11, tj2).
Therefore, we can use the equivalence

t11 = H(ti2) + F (ti1) + C −G(t̄j2)

m
ti2 = Hi(t11, t̄j2)− ti1,

and obtain the linearity of H(ti2).
In case (6), for the same boundary f10:00, we obtain linear-

ity from

t11 = H(tk2) + F (ti1) + C −G(t̄j2)

m
tk2 = Hk(t11, t̄j2)− F k(ti1).

Finally, in case (7), consider again boundary f10:00 =
fa1j :aji . When we fix t̄i2

t11 = H(tj1, t̄i2)−G(tj2) + C

m
tj1 = F j(t11) + tj2 −Gj(t̄i2)

implies the linearity ofH in the variable tj1. In order to show
linearity in ti2, we use the symmetric boundary and t12 =
H(t̄j1, ti2) − F (ti1). Assuming that in (7) H is of the form
H(tk1, ti2), we use the equivalence

t12 = H(tk1, ti2)− F (ti1)

m
ti1 − ti2 = F i(tk1)−Gi(t12),



that is apparent from the allocation figure of i. The linearity
of H in ti2 is immediate. For the linearity in tk1 we need to
exploit the linearity of F i(tk1), as follows from Theorem 2,
and the fact that the boundary between ai1 and aki exists, so
the figure of i is not of shape (1).
Proof of Observation 2. For every k 6= 1 the bid tk2 can
be changed to max(tk2, t

′
k2) without changing the allocation

a11 of t1 points in R11 and the allocation ai1 of points in
R01. Similarly, for k 6= i, 1 the bid tk1 can be changed to
max(tk1, t

′
k1). None of these changes modifies the alloca-

tions a11 and ai1 to any other allocation by SMON, so the
position of the boundary between them remains fa11:ai1 [t−1].
Since the same argument holds for changing the bids in t−1,
it must be the case that the boundary positions were equal
fa11:ai1 [t−1] = fa11:ai1 [t′−1].

Observation 4. The domain of F (ti1) is (−∞, c) or (−∞, c]
for some c ∈ R ∪ {−∞,+∞}, and similarly for G(ti2).

Proof of Observation 4. If the boundary fa11:ai1 exists
for t−1 = (t2, . . . , ti, . . . , tn), then it exists for t−1 =
(t2, . . . , t

′
i, . . . , tn), where t′i1 < ti1, and t′i2 = ti2 (in fact,

by the previous observation, t′i2 and t′k (k 6= i, 1) can be ar-
bitrary).

The following Observation implies that in general the al-
locations having to be constant for an open set of t−1 val-
ues is not too restrictive for continuous allocations. Similar
observations can be made also for (G and) even for the H
functions.
Observation 5. If ti1 is in the interior of the domain of
F (ti1), then there exist ti2, and tk (k 6= 1, i) bids, so that
t−1 = (t2, . . . , tn) has an open neighborhood, where the four
allocations in the figure of player 1 are constant.
Proof of Observation 5. Since we have a finite number of
variables, they can be moved (one by one) to some non-
boundary point of their own allocation figures, so that the
later moving of bids does not move a boundary of a previ-
ously fixed bid to be incident to the bid. Moreover, the allo-
cation ai1 remains valid in the region R01 of player 1.
Proof of Lemma 3. Assume w.l.o.g. that it is player 1 who
only has crossing allocation figures. As a first step, we show
that all allocation figures of player 1 are quasi-independent
(see Definition 4), disregarding tie-breaks. If the allocation
figure is not quasi-independent, then it is one of types (4)–
(9), i.e. the figure depends by some function H on a bid,
that does not receive tasks in R01 and in R10. If all allo-
cations in the regions remain constant after we increase or
decrease this bid, then only the boundaries of R00 change,
and the figure becomes non-crossing, a contradiction. There-
fore, if we increase this bid by an arbitrary small δ, it must
lose the item in region R00. Similarly, if we decrease this
bid, it must receive the item in region R01 (resp. region R10)
if it was a bid for task 1 (resp. task 2). That is, the non
quasi-independent allocation figure was due to different tie-
breaking depending on t12 (resp. on t11), and it is not valid in
any open neighborhood of t−1. Importantly, if a single entry,
say tk1 is increased/decreased in an arbitrary t−1, then the
only possible change (if any) in the figure of player 1 is the
increase/decrease of the vertical boundaries, and analogously
a change in tk2 can only change the horizontal boundaries.

We suppose for contradiction that a player i exists with a
non-crossing allocation figure. This means that in this figure
either the boundary f i11:00, or the boundary f i10:01 has positive
length. We elaborate on the two cases separately.

Case A: the boundary f i11:00, exists in the figure of player
i.

Let f i11:00 = f iaii:ajk , where j = k is allowed. We as-
sume w.l.o.g. that either j, k 6= 1, or j = 1, (and possibly
k = 1, too). Let ti = (ti1, ti2) and t′i = (ti1, ti2 + δ),
so that ti ∈ Ri11 and t′i ∈ Ri00. We consider the allocation
figures of player 1/ [1] for ti and for t′i. Since the figure of
player 1 is quasi-independent except for maybe tie-breaks,
we can perturb all bids by a small value, including ti, so that
in both cases the figure of 1 is quasi-independent, and t1 is
not a boundary point. Assume that j, k 6= 1. In that case, t1
gets from aii to ajk as ti is changed to t′i, so the allocation in
R00 of player 1 is changed, and since the figures are quasi-
independent, also the allocation inR01 must be changed from
ai1 to aj1. However, this is not possible due to a simple in-
crease in ti2, by SMON. Now assume that j = 1. In this case,
due to the increase of ti2, the bid t1 gets from regionR00 into
R10 or R11, also a contradiction, since only the horizontal
boundary (if any) can increase, as we noted above.

Case B: the boundary f i10:01, exists in the figure of player
i.

Let f i10:01 = f iaij :aki , where j = k is allowed. If j 6= 1,
then t1 gets from R00 into R00 or R10 due to decreasing ti2,
and the proof is completely analogous to the previous case.
The same holds if k 6= 1. Finally, if f i10:01 = f iai1:a1i , then
t1 gets from R10 to R01 if ti2 increases, again impossible by
changing the horizontal boundary.
Proof of Lemma 4. We show that all allocation figures
of player 1 are crossing, and this will imply the theorem by
Lemma 3.

Assume first, that for some t−1 with ti1 = ti1, the figure
of player 1 has the boundary fa11:ai1 , but is non-crossing. We
show that then there exists another t′′−1 with the same proper-
ties, that even has an open neighborhood G with constant allo-
cations in all regions of 1, contradicting Theorem 2. Let us fix
four different bids t11, t

2
1, t

3
1, t

4
1 of player 1 in the interiors of

the regionsR11, R01, R10, andR00, respectively. We can add
an arbitrarily small positive vector to each bid tj (j 6= 1, i)
one by one, so that for each of t11, t

2
1, t

3
1, t

4
1, the tj is not on

any boundary in the figure of j, moreover the allocations a11
and ai1 are still valid in the figure of 1 (since we increased the
other bids). If now ti is on some boundary for any of the fixed
t1 values, then we further increase a tj bid that this boundary
depends on (this cannot be t1, since the four t1 are internal
points). Now we found a t′−1 where every value is an internal
point of its region for all four t1 values, which means that the
allocations do not change in some open neighborhood G of
t′−1. Consequently, Theorem 2 applies, and for t′−1 we have
a crossing figure of player 1. Since we changed the bids by
arbitrarily small vectors, which moved the boundaries in the
figure of 1 by arbitrarily little, therefore the original figure
must have been crossing as well.

Next, we fix a t−1 with ti1 = ti1, so that the figure of 1
is crossing, and even in some open neighborhood G of t−1,
the allocations in the figure of 1 do not change. For this t−1
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Figure 5: Proof of Lemma 4.

the allocation must be quasi-independent, otherwise, by anal-
ogous argument as in Lemma 3, the figure can be made non-
crossing, contradicting the previous paragraph. Now, assume
for contradiction that for some arbitrary fixed other bids t′−1
the figure of 1 is non-crossing, that is, either f11:01 < f10:00,
or f10:00 < f11:01 holds in the figure of 1. Let j denote the
player who receives task 1 in R01 if the first case holds, resp.
in R00 if the second case holds, and let k be the player who
receives task 1 in the other region (R00 or R01, respectively),
where possibly k = j (see Figure 5). As the first step, we in-
crease every t`1 and t′`1 bid for ` 6= i, j to some common high
valueK in both t−1 and t′−1.HereK is higher than any bid in
t−1 or t′−1. This does not change the figure for t−1, since nei-
ther the F, nor theG value can change, and the figure must re-
main crossing according to the previous paragraph. Observe
that, because of increasing tk1, it might change the figure for
t′−1, but only by distorting its shape even further away from a
crossing figure. As a second step, we also set t′i1 = K in t′−1
(unless j = i), without changing the figure for t′−1.

In what follows, we modify the bids in t−1 further, to fi-
nally obtain t′−1, and show that the crossing figure cannot
become non-crossing during this modification. Next, we set
the value t`2 to t′`2 for all ` 6= 1. Notice that this does not
influence the existence and position of boundary fa11:ai1 (it
can change only the horizontal boundary and the other alloca-
tions). It remains to set tj1 and ti1 to t′j1 and t′i1, respectively.
If i 6= j, we decrease tj1 until either inR00 or inR01 player j
receives the first task. Note that for some tj1 this must occur,
because of the figure of player j is complete (for some fixed
t1), and tj arrives at the region Rj10 or Rj11 at some point. We
claim that as we decrease tj1, player j takes over the first task
in both of these regions at exactly the same tj1 value, and then
the vertical boundary at f11:01 starts to move to the left from
its original position (at F (t̄i1)). Were this not the case, the
figure would ’immediately’ become non-crossing, while ei-
ther the boundary f11:01 or the boundary f10:00 still depends
on ti1 by the locally nonlinear function F. This cannot be the
case for f11:01 by Theorem 2 but also not for f10:00, since in
this case our locally nonlinear F function would correspond
to one of the H functions in cases (4), (5), or (6) (here we ex-
ploit that the allocation was originally quasi-independent, so
the same player receives task 2 in R10 and in R00; the roles
of F and G are exchanged in the figure). In fact, as player j
takes over the first task, the allocation must be again quasi-
independent, and the figure remains crossing. Thus, we can
go on decreasing tj1 to a very low value, while we set ti1

to t′i1 without changing the allocations and the figure (tj1 is
low enough so that player j receives the first task for both
ti1 and t′i1). Finally, we increase tj1 back to t′j1. Now the
bids of the players other than 1 are set as in t′−1, so the figure
of 1 is non-crossing by assumption. It is easy to check, that
even if during this increase j loses the first task in either R00

or R01 against some other player k, the figure gets distorted
into the assumed shape, but with flipped roles of j and k, a
contradiction (see Figure fig:threshold). If j does not lose a
task (or, say j = k), then the figure remains crossing, again
contradicting the assumption.

Finally, assume that i = j. Then ti1 < t′i1 must hold, oth-
erwise ti1 could be decreased to ti1 maintaining local inde-
pendence and the crossing figure. Now we can increase ti1
to t′i1, and like above, the figure cannot take on the assumed
shape. Notice that the proof remains valid also if i = k.
Proof of Theorem 4. (a) If Fi were locally non-linear in
some internal point of its domain, then the mechanism would
be task-independent by Lemma 4. Therefore, Fi is locally lin-
ear in every internal point of its domain. Hence, Fi is linear
on any closed bounded sub-interval [−K, c−δ] of its domain,
since the interval is compact, and can be covered by finitely
many open neighborhoods on each of which the function is
linear. Finally, by taking K → ∞ and δ → 0, linearity ex-
tends to the whole domain (−∞, c).
(b) Let the allocation aj1 be valid in R01, implying f11:01 =
Fj(tj1). Assume for contradiction that Fi(ti1) < Fj(tj1) for
some other player i 6= j. Since the function Fi is defined, the
allocation ai1 does exist for some t′−1. We change the bids
in t−1 and t′−1 one by one, to make them equal. First, we
increase every tk1 and t′k1 for k 6= i, j, to a common high
value (with very high Fk(tk1)), thereby not changing the al-
location in R01 for t−1, or for t′−1. Furthermore, ai1 remains
the allocation for t′−1, if we decrease t′i1 below ti1, and in-
crease t′j1 above tj1 when necessary. Next, we change t−1
by increasing tj1 to t′j1. If this changes the allocation aj1 to
ak1 or ai1, then the boundary f11:01 must have jumped up to
Fk(tk1) > Fj(t

′
j1), or jumped down to Fi(ti1) < Fj(tj1), re-

spectively, contradicting continuity. Finally, moving ti1 down
to t′i1 changes the allocation to ai1 (since by now t−1 = t′−1)
and implies a jump of the boundary to Fi(ti1) < Fj(tj1), a
contradiction.
(c) By analogous argument as in (b) it follows that the domain
of any Fi (when defined), cannot ’stop’ at some finite upper
bound c. Finally, (d) follows directly from (a) and (b).
Proof of Theorem 5. We assume that in a neighborhood of
some fixed t−1, the boundary function f10:00 has an additive
componentH(ti1+ti2). Then for this set of t−1 the allocation
aii is valid in the region R00. We show that H is linear with
the given slope. According to Theorem 4 (d), the values tj1
for j 6= 1, i can be increased so that in R01 the allocation ai1
appears. Moreover, increasing these bids does not change the
allocations in R11, R10, and in R00, and does not change the
boundary position f10:00. Now by increasing t̄i1 by a small
δ, the boundaries f10:00 and f11:01 move parallel by λ1i,horiz ·
δ, by the same slope as Fi(ti1). However, if we increase t̄i1
before increasing all other tj1, exactly the same increase is
achieved, due to the function H(ti1 + ti2). So, H must have
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slope λ1i,horiz as well. Exactly the same argument remains
valid, if H depends on ti1, but not on ti2, because R00 has
the allocation aik for some k 6= i.

The case when H depends only on ti2 (and possibly on
some tk1), needs a more careful treatment. We decrease ti1
down to the point where task 1 is allocated to player i ei-
ther in R00, or in R01, or both (one of these occurs for small
enough ti1 by Theorem 4 (d)) Assume, e.g., that the allo-
cation in R00, becomes aii, so that ti is now in region Ri11
for some fixed t1 ∈ R00 (see Figure 6). After the bound-
ary point we further decrease ti1 by a small ∆, thereby de-
creasing the boundary f10:00 by λ1i,horiz ·∆, according to the
previous paragraph. Next, we decrease ti2 by δ, which fur-
ther decreases this boundary by the same slope λ1i,horiz · δ.
Finally, we increase ti1 by ∆ to the boundary point of ti, and
then back to its original value, which increases the boundary
by λ1i,horiz · ∆. Altogether, we decreased ti2 by δ, and this
moved the boundary f10:00 by λ1i,horiz · δ, verifying the de-
clared slope of H as a function of ti2. The case when either
R00 or R01 becomes aik, can be handled by similar argu-
ments, as shown in Figure 6. Note that until ti1 reached a
non-horizontal boundary point somewhere, no allocation and
no boundary changes at all.
Proof of Lemma 5. We assume w.l.o.g., that k = 1, and that
the allocations ai1 and a1i both exist. Since the mechanism is
not task-independent, player 1 has a non-crossing allocation
figure by Lemma 3.
Case 1. The non-crossing figure has a shape like in Figure 1
(a).

We decrease ti1 until in at least one of the regions R01 or
R00 player i receives task 1 (this happens for some ti1 by
Theorem 4 (d)). Moreover, before it happens, none of the
four allocations change, and the figure has constant shape. If
player i receives task 1 in region R00 strictly before the same
happens in region R01, then for an interval of ti1 values the
allocation is of type (4)–(9), and Corollary 2 (also using Ob-
servation 5) implies λki,horiz = λki,vert. Otherwise, if playes
i gets task 1 in R01 before or at the same time as in R00,
then R01 has allocation ai1 in a non-crossing figure of still
the same shape.

Now similarly we decrease ti2 until player i receives task
2 in R00 or in R10 or both. By the same argument, we can

assume that in R10 the allocation is a1i, the figure is non-
crossing, because of the shape the slanted boundary f10:01
exists. However, now this boundary changes by a function
of (ti1 − ti2) due to (?). At the same time, the boundary
position is a linear function of ti1 with slope λki,horiz (together
with f11:01), and a linear function of −ti2 with slope λki,vert
(together with f11:10). This is possible only if λki,horiz =

λki,vert.

Case 2. The non-crossing figure has a shape like in Figure 1
(c).

The proof is analogous to that of Case 1 up to the point
where R10 and R01 have the allocations a1i and ai1, and
R00 (possibly) not. Now we decrease ti1 further, until ei-
ther in R00 player i gets task 1 (or both tasks), or the fig-
ure changes its shape and Case 1. can be applied. But what
if player i ’takes over’ task 1 (both tasks in fact) in R00

at the very point where the figure becomes crossing (and
the same happens when we decrease ti2)? In this case it
can be verified that for any (large enough) fixed t1 ∈ R00

point, in the figure of player i a slanted boundary of the form
λki,horizti1 + λki,vertti2 = c appears, implying λki,horiz =

λki,vert.

Proof of Lemma 2.3. Let k = 1. If 1, i, j is a triangle, then
it can be assumed (modulo permutation of the player indices)
that the allocations a1j and ai1 exist. Since the mechanism is
not task-independent, player 1 has a non crossing figure. We
start from the non-crossing allocation figure of player 1 and
decrease ti1 until in one of the regions R01 or R00 player i
receives task 1. Similarly, we decrease tj2 until in one of the
regionsR10 orR00 player j receives task 2. The proof is now
similar to the proof of Lemma 5: in any case we produce a
figure of type (2)–(9), and the equality follows from Lemma 2
(c).
Proof of Theorem 6. Consider first neighboring nodes i and
k, with the above defined λki . For F ki and Gki the statement
follows from the definition of λki and from Lemma 5; for H
it holds by Theorem 5. For other players i connected to k
by a longer path we prove the theorem by induction on the
distance of k and i. Note that for such players F ki and Gki are
undefined because aik and aki never occur. We need to treat
only those cases when in Rk00 the allocation is aii or aij , and
the position of boundaries ofRk00 have an additive component
H(ti1+ti2) orH(ti1, tj2).We consider first a fixed allocation
figure with aii in Rk00

Let w.l.o.g. k = 1, and let 1, ` . . . , i be a shortest path
between 1 and i. Assume w.l.o.g. that a`1 exists. Accord-
ing to Theorem 4 (d) the ts1 Werte of all players s 6= 1, i, `
can be increased so that in R01 the allocation becomes a`1
(ti1 needs not be increased, since ai1 does not occur for any
bid). Due to increasing these ts1 bids, the allocations in
R10 and in R00 do not change, neither changes the bound-
ary f10:00 between them. Now if the allocation in R01 is
a`1, then for the t1 points of the boundary f01:00 it holds that
t12 = H(ti1 + ti2) − λ1` t`1 + c where c is a constant. Now
looking at the same (inverse) boundary in the allocation figure
of player `, there it holds that t`1 = λ`i(ti1 + ti2)−λ`1t12 +d.
Here we exploit the induction hypothesis: since the distance



of ` and i is smaller than the distance of 1 and i in the player
graph, the λ`i has been defined and the dependence of f `10:00
on ti is linear with this slope. Comparing the equivalent
equalities yields thatH is linear (with slope λ`i/λ

`
1 = λ1`/λ

i
`).

Recall that we started from an arbitrary figure of 1 where aii
appeared, and the choice of ` was independent of the figure
and of t−1. We define the constant slope of H to be λ1i . The
case when inR00 the allocation is aij , can be treated the same
way, by induction on the distance of the edge {i, j} from ver-
tex k in the player-graph.
Proof of Observation 3. For simplicity of notation we as-
sume that (i0, i1, i2, . . . , it) = (0, 1, . . . , t), and prove the
statement by induction on t. For length t = 1 it is trivial. As-
sume that it holds for paths of length t−1. If {0, t} is not and
edge, then the argument is the same as in the proof of Theo-
rem 6 (there we did not use that the path was a shortest path,
just that {1, i} is not an edge, that is, ai1 does not exist).

If {0, t} is an edge, then we claim that λt−10 = λt−1t · λt0.
This will conclude the proof by rearranging to λtt−1 · λt−10 =
λt0, and applying the induction hypothesis. If {0, t− 1}
is also an edge, then the claim holds by Lemma 2.3. If
{0, t− 1} is not an edge, then it holds by the same proof as
in Theorem 6, applied for the path 0, t, t− 1.
Proof of Corollary 3. The claim follows by taking (short-
est) paths from i to j and from j to k. If these paths have
common edges from j to some player, the corresponding λ
values cancel out and can be omitted from the path from i to
k.
Proof of Lemma 7. For simplicity, we sketch the proof for
the case when each λki equals 1. The cij values can be de-
fined in a straightforward way, and the consistency of these
definitions (i.e. validity in all allocation figures) follows eas-
ily. W.l.o.g. we define c11 = 0. If an allocation aij never
occurs, then we set cij = ∞. Otherwise the ci1 values are
the additive constants in Fi(ti1) (since λ1i = 1), and similarly
for c1i. For every other allocation aii or aij , consider any fig-
ure of player 1 with this allocation in R00. If the boundary
f11:00 does not appear in the figure, then we define a virtual
boundary of the form f11:00 = t11 + t12 to always mean
the symmetry axis between regions R11 and R00. The cij is
determined by the position of the (virtual) boundary f11:00,
which is a linear function of ti1 and tj2 (of slope 1 for both,
by assumption). Let cij be such that f11:00 = ti1 + tj2 + cij .

Why are these definitions consistent? Consider for exam-
ple a boundary f iaii:aji in the figure of player i. We have to
show that this boundary has the equation ti1 = tj1 + cji− cii
given the above definition of cji and cii. However, if in the
figure of player 1 inR00 the allocation is aji, and we decrease
ti1, the boundary f11:00 of R00 does not change until the ti1
reaches the boundary (ti1 = f iaii:aji ), where the allocation
changes to aii. At this very point both f11:00 = tj1 + ti2 +cji

and f11:00 = ti1 + ti2 + cii hold. Putting it all together
f iaii:aji = tj1 + cji − cii which concludes the proof of this
case.
Proof of Lemma 8. The proof follows the same lines as the
definition and consistency proof of cii values. Assuming that
player k is the representative of any particular group g, we
define Cg to be the supremum of (tk1 + tk2) values such that

with this tk player k ever gets both tasks. It is easy to see
that it does not depend on the representative whether Cg is
finite or infinite for a given group. Moreover, for at least one
group Cg = ∞ must hold, otherwise for ’very high’ bids no
allocation would be determined. Assume w.l.o.g. that C1 =
∞. We define the Φg functions relative to group 1 (to player
1, in fact) and fix Φ1 to be the identity function.

Let k = kg be the representative of a fixed group g. Recall
that ckk = 0 because we normalized to zero the additive con-
stants for akk of group-representatives. For arbitrary value
x < Cg we determine Φg(x) as follows. The mechanism al-
locates akk for some t such that tk1 + tk2 > x (by definition
of Cg), and by monotonicity the allocation remains if we de-
crease tk1 or tk2 so that tk1 + tk2 = x now the position of the
(virtual) boundary f11:00 in the figure of player 1 determines
Φg(x), that is Φg(x) = Φg(tk1 + tk2) = t11 + t12 should
hold (in fact, the bids in group 1 can always be increased so
high that the boundary f11:00 really appears).

Checking the consistency of these definitions means check-
ing that in the figure of a player i of group g the region Ri00
has boundaries determined by H = minh Φ−1g (Φh(Opth)).
This can be done analogously to checking the consistency of
cij in Lemma 7.

Since the inverse function Φ−1g would be Φ1 if we ex-
changed the roles of 1 and g, it follows that lim−∞ Φg = −∞
must hold. Furthermore, continuity requires that if Cg is fi-
nite then limCg Φg = ∞ (we can define Φg(x) = ∞ for
x ≥ Cg).


