A characterization of n-player strongly monotone scheduling mechanisms

Angelina Vidali (UPMC-LIP6) and Annamaria Kovacs (Goethe University Frankfurt)

Scheduling Selfish unrelated Machines

It is a well-studied NP-hard problem. Lenstra, Shmoys, and Tardos showed that its poly-time approximation ratio is between 3/2 and 2.

Nisan and Ronen in 1998 initiated the study of its mechanism-design version.

Truthfulness: No player can increase his utility by lying.

Selfish players want to maximize their utility: $p_i(a_i, v_{-i}) - v_i a_i$

- v_i : valuation
- v_{\perp} : valuations of the other players except for player I (input)
- a_i : allocation
- p_i : payment of player I (output)

A mechanism is truthful if and only if for all v_i , v_i

$$p_i(a_i, v_{-i}) - v_i a_i \ge p_i(a_i', v_{-i}) - v_i a_i'$$

Weak-Monotonicity (W-mon) is nesessary and sufficient for Truthfulness

the row vectors of player i satisfy

$$(\mathbf{a_i} - \mathbf{a_i'}) \cdot (\mathbf{v_i} - \mathbf{v_i'}) \leq 0.$$

• The other rows do not have to satisfy any condition

Strong-Monotonicity (S-mon)

the row vectors of player i satisfy

$$(\mathbf{a_i} - \mathbf{a_i'}) \cdot (\mathbf{v_i} - \mathbf{v_i'}) < 0.$$

for $v_i \neq v_i$ ' and $a_i \neq a_i$ '.

• The other rows do not have to satisfy any condition

Strong-Monotonicity parallels Arrow' IIA

Independence of irrelevant Alternatives (IIA)

If A is preferred to B out of the choice set {A,B},

introducing a third option X, expanding the choice set to {A,B,X},

must not make B preferable to A.

used in Arrow's impossibility theorem 1950

S-Mon can be assumed w.l.o.g.:

- Unrestricted domain (Robert's Theorem):
- 2-pllayer case (except for tie-breaking)

Many of the known characterization results use it e.g. for combinatorial auctions Lavi Mu'halem Nissan [FOCS'03] Dobzinski Sundurarajan [EC'08]

Is it restrictive?

Yes, very! But characterization proofs are complicated even after assuming it IIA has an economical interpretation.

Affine Maximizers

The Vickrey Mechanism selects the allocation a which maximizes the social welfare: $\sum_i a_i v_i$

An Affine maximizer selects the allocation a which maximizes the weighted social welfare $\sum_i \lambda_i a_i v_i + \gamma_a$ where $\lambda_i > 0$ (one for each player i) and γ_a (one for each possible allocation) are constants.

(there exist payments that make the mechanisms truthful)

Example of an affine minimizer:

$$\min\{v_{II}+v_{I2}+1,v_{II}+v_{22}+2,v_{2I}+v_{I2}+5,v_{2I}+v_{22}\} \qquad \text{Input:} \qquad \boxed{2 \ 2}$$

$$11 \quad 10 \quad 01 \quad 00$$

$$00 \quad 01 \quad 10 \quad 11$$

Task-independent mechanisms

only exist for the case of additive valuations

Gibbard-Satterthwaite theorem for voting rules (1973)

For 3 or more outcomes, the only truthful mechanism is dictatorship.

Robert's theorem (1979)

For 3 or more outcomes, allowing payments, if we suppose that the domain of valuations is unrestricted the only truthful mechanisms are the affine maximizers.

Grouping Minimizers

- 1. Run Affine minimizer (2,y) for players 1 and 2
- 2. Run Affine minimzer (λ', γ') for players 3 and 4
- 3. The different groups of players compete which group is getting the tasks:

Compute $\min \left\{ \sum_{i=1,2} \lambda_i a_i v_i + \gamma_a, \left(\sum_{i=3,4} \lambda_i' a_i' v_i + \gamma_a' \right)^2 \right\}$ where a,a' the winning allocations of each affine minimizer.

(instead of x^2 you can use any increasing bijection)

Theorem

The truthful scheduling mechanisms for n players are either grouping minimizers or task-independent mechanisms.

Assumptions:

- decisiveness,
- S-Mon,
- boundaries are continuous functions of other player's bids

The result extends to (subadditive, superadditive, submodular) combinatorial auctions that allocate all items! ([Vidali '11])